Compare commits
10 Commits
f54a33a293
...
558c4879fa
Author | SHA1 | Date | |
---|---|---|---|
![]() |
558c4879fa | ||
![]() |
6ebfc0d8b9 | ||
![]() |
532431cc36 | ||
![]() |
fb21e7f106 | ||
![]() |
d0da6c4beb | ||
![]() |
c28185082d | ||
![]() |
5fcece2c8e | ||
3a444daa6d | |||
1dc686215e | |||
c8670ae1b9 |
330
src/hz.erl
330
src/hz.erl
@ -657,13 +657,13 @@ dry_run_map(Map) ->
|
||||
|
||||
%% @doc
|
||||
%% Decode the "cb_XXXX" string that came out of a tx_info or dry_run, to
|
||||
%% the Erlang representation of FATE objects used by aeb_fate_encoding. See
|
||||
%% the Erlang representation of FATE objects used by gmb_fate_encoding. See
|
||||
%% decode_bytearray/2 for an alternative that provides simpler outputs based on
|
||||
%% information provided by an AACI.
|
||||
|
||||
decode_bytearray_fate(EncodedStr) ->
|
||||
Encoded = unicode:characters_to_binary(EncodedStr),
|
||||
{contract_bytearray, Binary} = aeser_api_encoder:decode(Encoded),
|
||||
{contract_bytearray, Binary} = gmser_api_encoder:decode(Encoded),
|
||||
case Binary of
|
||||
<<>> -> {ok, none};
|
||||
<<"Out of gas">> -> {error, out_of_gas};
|
||||
@ -671,7 +671,7 @@ decode_bytearray_fate(EncodedStr) ->
|
||||
% FIXME there may be other errors that are encoded directly into
|
||||
% the byte array. We could try and catch to at least return
|
||||
% *something* for cases that we don't already detect.
|
||||
Object = aeb_fate_encoding:deserialize(Binary),
|
||||
Object = gmb_fate_encoding:deserialize(Binary),
|
||||
{ok, Object}
|
||||
end.
|
||||
|
||||
@ -953,7 +953,7 @@ contract_create(CreatorID, Path, InitArgs) ->
|
||||
%% </li>
|
||||
%% <li>
|
||||
%% <b>GasPrice:</b>
|
||||
%% This is a factor that is used calculate a value in aettos (the smallest unit of
|
||||
%% This is a factor that is used calculate a value in pucks (the smallest unit of
|
||||
%% Gajumaru's currency value) for the gas consumed. In times of high contention
|
||||
%% in the mempool increasing the gas price increases the value of mining a given
|
||||
%% transaction, thus making miners more likely to prioritize the high value ones.
|
||||
@ -1059,14 +1059,14 @@ contract_create3(CreatorID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, InitArg
|
||||
contract_create4(CreatorID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, CallData) ->
|
||||
PK = unicode:characters_to_binary(CreatorID),
|
||||
try
|
||||
{account_pubkey, OwnerID} = aeser_api_encoder:decode(PK),
|
||||
{account_pubkey, OwnerID} = gmser_api_encoder:decode(PK),
|
||||
contract_create5(OwnerID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, CallData)
|
||||
catch
|
||||
Error:Reason -> {Error, Reason}
|
||||
end.
|
||||
|
||||
contract_create5(OwnerID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, CallData) ->
|
||||
Code = aeser_contract_code:serialize(Compiled),
|
||||
Code = gmser_contract_code:serialize(Compiled),
|
||||
Source = maps:get(contract_source, Compiled, <<>>),
|
||||
VM = 1,
|
||||
ABI = 1,
|
||||
@ -1074,7 +1074,7 @@ contract_create5(OwnerID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, CallData)
|
||||
ContractCreateVersion = 1,
|
||||
Type = contract_create_tx,
|
||||
Fields =
|
||||
[{owner_id, aeser_id:create(account, OwnerID)},
|
||||
[{owner_id, gmser_id:create(account, OwnerID)},
|
||||
{nonce, Nonce},
|
||||
{code, Code},
|
||||
{source, Source},
|
||||
@ -1097,9 +1097,9 @@ contract_create5(OwnerID, Nonce, Amount, TTL, Gas, GasPrice, Compiled, CallData)
|
||||
{gas_price, int},
|
||||
{gas, int},
|
||||
{call_data, binary}],
|
||||
TXB = aeser_chain_objects:serialize(Type, ContractCreateVersion, Template, Fields),
|
||||
TXB = gmser_chain_objects:serialize(Type, ContractCreateVersion, Template, Fields),
|
||||
try
|
||||
{ok, aeser_api_encoder:encode(transaction, TXB)}
|
||||
{ok, gmser_api_encoder:encode(transaction, TXB)}
|
||||
catch
|
||||
error:Reason -> {error, Reason}
|
||||
end.
|
||||
@ -1272,7 +1272,7 @@ contract_call(CallerID, Gas, AACI, ConID, Fun, Args) ->
|
||||
%% </li>
|
||||
%% <li>
|
||||
%% <b>GasPrice:</b>
|
||||
%% This is a factor that is used calculate a value in aettos (the smallest unit of
|
||||
%% This is a factor that is used calculate a value in pucks (the smallest unit of
|
||||
%% Gajumaru's currency value) for the gas consumed. In times of high contention
|
||||
%% in the mempool increasing the gas price increases the value of mining a given
|
||||
%% transaction, thus making miners more likely to prioritize the high value ones.
|
||||
@ -1330,7 +1330,7 @@ contract_call(CallerID, Nonce, Gas, GP, Amount, TTL, AACI, ConID, Fun, Args) ->
|
||||
contract_call2(CallerID, Nonce, Gas, GasPrice, Amount, TTL, ConID, CallData) ->
|
||||
CallerBin = unicode:characters_to_binary(CallerID),
|
||||
try
|
||||
{account_pubkey, PK} = aeser_api_encoder:decode(CallerBin),
|
||||
{account_pubkey, PK} = gmser_api_encoder:decode(CallerBin),
|
||||
contract_call3(PK, Nonce, Gas, GasPrice, Amount, TTL, ConID, CallData)
|
||||
catch
|
||||
Error:Reason -> {Error, Reason}
|
||||
@ -1339,7 +1339,7 @@ contract_call2(CallerID, Nonce, Gas, GasPrice, Amount, TTL, ConID, CallData) ->
|
||||
contract_call3(PK, Nonce, Gas, GasPrice, Amount, TTL, ConID, CallData) ->
|
||||
ConBin = unicode:characters_to_binary(ConID),
|
||||
try
|
||||
{contract_pubkey, CK} = aeser_api_encoder:decode(ConBin),
|
||||
{contract_pubkey, CK} = gmser_api_encoder:decode(ConBin),
|
||||
contract_call4(PK, Nonce, Gas, GasPrice, Amount, TTL, CK, CallData)
|
||||
catch
|
||||
Error:Reason -> {Error, Reason}
|
||||
@ -1350,9 +1350,9 @@ contract_call4(PK, Nonce, Gas, GasPrice, Amount, TTL, CK, CallData) ->
|
||||
CallVersion = 1,
|
||||
Type = contract_call_tx,
|
||||
Fields =
|
||||
[{caller_id, aeser_id:create(account, PK)},
|
||||
[{caller_id, gmser_id:create(account, PK)},
|
||||
{nonce, Nonce},
|
||||
{contract_id, aeser_id:create(contract, CK)},
|
||||
{contract_id, gmser_id:create(contract, CK)},
|
||||
{abi_version, ABI},
|
||||
{ttl, TTL},
|
||||
{amount, Amount},
|
||||
@ -1369,9 +1369,9 @@ contract_call4(PK, Nonce, Gas, GasPrice, Amount, TTL, CK, CallData) ->
|
||||
{gas_price, int},
|
||||
{gas, int},
|
||||
{call_data, binary}],
|
||||
TXB = aeser_chain_objects:serialize(Type, CallVersion, Template, Fields),
|
||||
TXB = gmser_chain_objects:serialize(Type, CallVersion, Template, Fields),
|
||||
try
|
||||
{ok, aeser_api_encoder:encode(transaction, TXB)}
|
||||
{ok, gmser_api_encoder:encode(transaction, TXB)}
|
||||
catch
|
||||
error:Reason -> {error, Reason}
|
||||
end.
|
||||
@ -1386,105 +1386,106 @@ contract_call4(PK, Nonce, Gas, GasPrice, Amount, TTL, CK, CallData) ->
|
||||
%% of calldata
|
||||
|
||||
prepare_contract(File) ->
|
||||
case aeso_compiler:file(File, [{aci, json}]) of
|
||||
case gmso_compiler:file(File, [{aci, json}]) of
|
||||
{ok, #{aci := ACI}} -> {ok, prepare_aaci(ACI)};
|
||||
Error -> Error
|
||||
end.
|
||||
|
||||
prepare_aaci(ACI) ->
|
||||
Types = lists:foldl(fun prepare_namespace_types/2, #{}, ACI),
|
||||
% We want to take the types represented by the ACI, things like N1.T(N2.T),
|
||||
% and dereference them down to concrete types like
|
||||
% {tuple, [integer, string]}. Our type dereferencing algorithms
|
||||
% shouldn't act directly on the JSON-based structures that the compiler
|
||||
% gives us, though, though, so before we do the analysis, we should strip
|
||||
% the ACI down to a list of 'opaque' type defintions and function specs.
|
||||
{Name, OpaqueSpecs, TypeDefs} = convert_aci_types(ACI),
|
||||
|
||||
% Now that we have the opaque types, we can dereference the function specs
|
||||
% down to the concrete types they actually represent. We annotate each
|
||||
% subexpression of this concrete type with other info too, in case it helps
|
||||
% make error messages easier to understand.
|
||||
Specs = annotate_function_specs(OpaqueSpecs, TypeDefs, #{}),
|
||||
|
||||
{aaci, Name, Specs, TypeDefs}.
|
||||
|
||||
convert_aci_types(ACI) ->
|
||||
% Find the main contract, so we can get the specifications of its
|
||||
% entrypoints.
|
||||
[{NameBin, SpecDefs}] =
|
||||
[{N, F}
|
||||
|| #{contract := #{kind := contract_main,
|
||||
functions := F,
|
||||
name := N}} <- ACI],
|
||||
Name = binary_to_list(NameBin),
|
||||
Specs = simplify_specs(SpecDefs, #{}, Types),
|
||||
{aaci, Name, Specs, Types}.
|
||||
% Turn these specifications into opaque types that we can reason about.
|
||||
Specs = lists:map(fun convert_function_spec/1, SpecDefs),
|
||||
|
||||
prepare_namespace_types(#{namespace := NS}, Types) ->
|
||||
prepare_namespace_types2(NS, false, Types);
|
||||
prepare_namespace_types(#{contract := NS}, Types) ->
|
||||
prepare_namespace_types2(NS, true, Types).
|
||||
% These specifications can reference other type definitions from the main
|
||||
% contract and any other namespaces, so extract these types and convert
|
||||
% them too.
|
||||
TypeDefTree = lists:map(fun convert_namespace_typedefs/1, ACI),
|
||||
% The tree structure of the ACI naturally leads to a tree of opaque types,
|
||||
% but we want a map, so flatten it out before we continue.
|
||||
TypeDefMap = collect_opaque_types(TypeDefTree, #{}),
|
||||
|
||||
prepare_namespace_types2(NS, IsContract, Types) ->
|
||||
TypeDefs = maps:get(typedefs, NS),
|
||||
NameBin = maps:get(name, NS),
|
||||
% This is all the information we actually need from the ACI, the rest is
|
||||
% just pre-compute and acceleration.
|
||||
{Name, Specs, TypeDefMap}.
|
||||
|
||||
convert_function_spec(#{name := NameBin, arguments := Args, returns := Result}) ->
|
||||
Name = binary_to_list(NameBin),
|
||||
Types2 = case IsContract of
|
||||
true ->
|
||||
maps:put(Name, {[], contract}, Types);
|
||||
false ->
|
||||
Types
|
||||
end,
|
||||
Types3 = case maps:find(state, NS) of
|
||||
{ok, StateDefACI} ->
|
||||
StateDefOpaque = opaque_type([], StateDefACI),
|
||||
maps:put(Name ++ ".state", {[], StateDefOpaque}, Types2);
|
||||
error ->
|
||||
Types2
|
||||
end,
|
||||
simplify_typedefs(TypeDefs, Types3, Name ++ ".").
|
||||
ArgTypes = lists:map(fun convert_arg/1, Args),
|
||||
ResultType = opaque_type([], Result),
|
||||
{Name, ArgTypes, ResultType}.
|
||||
|
||||
simplify_typedefs([], Types, _NamePrefix) ->
|
||||
Types;
|
||||
simplify_typedefs([Next | Rest], Types, NamePrefix) ->
|
||||
#{name := NameBin, vars := ParamDefs, typedef := T} = Next,
|
||||
Name = NamePrefix ++ binary_to_list(NameBin),
|
||||
Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs],
|
||||
Type = opaque_type(Params, T),
|
||||
NewTypes = maps:put(Name, {Params, Type}, Types),
|
||||
simplify_typedefs(Rest, NewTypes, NamePrefix).
|
||||
|
||||
simplify_specs([], Specs, _Types) ->
|
||||
Specs;
|
||||
simplify_specs([Next | Rest], Specs, Types) ->
|
||||
#{name := NameBin, arguments := ArgDefs, returns := ResultDef} = Next,
|
||||
convert_arg(#{name := NameBin, type := TypeDef}) ->
|
||||
Name = binary_to_list(NameBin),
|
||||
ArgTypes = [simplify_args(Arg, Types) || Arg <- ArgDefs],
|
||||
{ok, ResultType} = type(ResultDef, Types),
|
||||
NewSpecs = maps:put(Name, {ArgTypes, ResultType}, Specs),
|
||||
simplify_specs(Rest, NewSpecs, Types).
|
||||
|
||||
simplify_args(#{name := NameBin, type := TypeDef}, Types) ->
|
||||
Name = binary_to_list(NameBin),
|
||||
% FIXME We should make this error more informative, and continue
|
||||
% propogating it up, so that the user can provide their own ACI and find
|
||||
% out whether it worked or not. At that point ACI -> AACI could almost be a
|
||||
% module or package of its own.
|
||||
{ok, Type} = type(TypeDef, Types),
|
||||
{ok, Type} = opaque_type([], TypeDef),
|
||||
{Name, Type}.
|
||||
|
||||
% Type preparation has two goals. First, we need a data structure that can be
|
||||
% traversed quickly, to take sophia-esque erlang expressions and turn them into
|
||||
% fate-esque erlang expressions that aebytecode can serialize. Second, we need
|
||||
% partially substituted names, so that error messages can be generated for why
|
||||
% "foobar" is not valid as the third field of a `bazquux`, because the third
|
||||
% field is supposed to be `option(integer)`, not `string`.
|
||||
%
|
||||
% To achieve this we need three representations of each type expression, which
|
||||
% together form an 'annotated type'. First, we need the fully opaque name,
|
||||
% "bazquux", then we need the normalized name, which is an opaque name with the
|
||||
% bare-minimum substitution needed to make the outer-most type-constructor an
|
||||
% identifiable built-in, ADT, or record type, and then we need the flattened
|
||||
% type, which is the raw {variant, [{Name, Fields}, ...]} or
|
||||
% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE
|
||||
% coercion. The type sub-expressions in these flattened types will each be
|
||||
% fully annotated as well, i.e. they will each contain *all three* of the above
|
||||
% representations, so that coercion of subexpressions remains fast AND
|
||||
% informative.
|
||||
%
|
||||
% In a lot of cases the opaque type given will already be normalized, in which
|
||||
% case either the normalized field or the non-normalized field of an annotated
|
||||
% type can simple be the atom `already_normalized`, which means error messages
|
||||
% can simply render the normalized type expression and know that the error will
|
||||
% make sense.
|
||||
convert_namespace_typedefs(#{namespace := NS}) ->
|
||||
Name = namespace_name(NS),
|
||||
convert_typedefs(NS, Name);
|
||||
convert_namespace_typedefs(#{contract := NS}) ->
|
||||
Name = namespace_name(NS),
|
||||
ImplicitTypes = convert_implicit_types(NS, Name),
|
||||
ExplicitTypes = convert_typedefs(NS, Name),
|
||||
[ImplicitTypes, ExplicitTypes].
|
||||
|
||||
type(T, Types) ->
|
||||
O = opaque_type([], T),
|
||||
flatten_opaque_type(O, Types).
|
||||
namespace_name(#{name := NameBin}) ->
|
||||
binary_to_list(NameBin).
|
||||
|
||||
convert_implicit_types(#{state := StateDefACI}, Name) ->
|
||||
StateDefOpaque = opaque_type([], StateDefACI),
|
||||
[{Name, [], contract},
|
||||
{Name ++ ".state", [], StateDefOpaque}];
|
||||
convert_implicit_types(_, Name) ->
|
||||
[{Name, [], contract}].
|
||||
|
||||
convert_typedefs(#{typedefs := TypeDefs}, Name) ->
|
||||
convert_typedefs_loop(TypeDefs, Name ++ ".", []).
|
||||
|
||||
% Take a namespace that has already had a period appended, and use that as a
|
||||
% prefix to convert and annotate a list of types.
|
||||
convert_typedefs_loop([], _NamePrefix, Converted) ->
|
||||
Converted;
|
||||
convert_typedefs_loop([Next | Rest], NamePrefix, Converted) ->
|
||||
#{name := NameBin, vars := ParamDefs, typedef := DefACI} = Next,
|
||||
Name = NamePrefix ++ binary_to_list(NameBin),
|
||||
Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs],
|
||||
Def = opaque_type(Params, DefACI),
|
||||
convert_typedefs_loop(Rest, NamePrefix, [Converted, {Name, Params, Def}]).
|
||||
|
||||
collect_opaque_types([], Types) ->
|
||||
Types;
|
||||
collect_opaque_types([L | R], Types) ->
|
||||
NewTypes = collect_opaque_types(L, Types),
|
||||
collect_opaque_types(R, NewTypes);
|
||||
collect_opaque_types({Name, Params, Def}, Types) ->
|
||||
maps:put(Name, {Params, Def}, Types).
|
||||
|
||||
% Convert an ACI type defintion/spec into the 'opaque type' representation that
|
||||
% our dereferencing algorithms can reason about.
|
||||
opaque_type(Params, NameBin) when is_binary(NameBin) ->
|
||||
Name = opaque_type_name(NameBin),
|
||||
case not is_atom(Name) and lists:member(Name, Params) of
|
||||
@ -1508,7 +1509,7 @@ opaque_type(Params, Pair) when is_map(Pair) ->
|
||||
[{Name, TypeArgs}] = maps:to_list(Pair),
|
||||
{opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}.
|
||||
|
||||
% atoms for builtins, lists for user defined types
|
||||
% atoms for builtins, strings (lists) for user-defined types
|
||||
opaque_type_name(<<"int">>) -> integer;
|
||||
opaque_type_name(<<"address">>) -> address;
|
||||
opaque_type_name(<<"contract">>) -> contract;
|
||||
@ -1519,16 +1520,49 @@ opaque_type_name(<<"map">>) -> map;
|
||||
opaque_type_name(<<"string">>) -> string;
|
||||
opaque_type_name(Name) -> binary_to_list(Name).
|
||||
|
||||
flatten_opaque_type(T, Types) ->
|
||||
% Type preparation has two goals. First, we need a data structure that can be
|
||||
% traversed quickly, to take sophia-esque erlang expressions and turn them into
|
||||
% fate-esque erlang expressions that gmbytecode can serialize. Second, we need
|
||||
% partially substituted names, so that error messages can be generated for why
|
||||
% "foobar" is not valid as the third field of a `bazquux`, because the third
|
||||
% field is supposed to be `option(integer)`, not `string`.
|
||||
%
|
||||
% To achieve this we need three representations of each type expression, which
|
||||
% together form an 'annotated type'. First, we need the fully opaque name,
|
||||
% "bazquux", then we need the normalized name, which is an opaque name with the
|
||||
% bare-minimum substitution needed to make the outer-most type-constructor an
|
||||
% identifiable built-in, ADT, or record type, and then we need the dereferenced
|
||||
% type, which is the raw {variant, [{Name, Fields}, ...]} or
|
||||
% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE
|
||||
% coercion. The type sub-expressions in these dereferenced types will each be
|
||||
% fully annotated as well, i.e. they will each contain *all three* of the above
|
||||
% representations, so that coercion of subexpressions remains fast and
|
||||
% informative.
|
||||
%
|
||||
% In a lot of cases the opaque type given will already be normalized, in which
|
||||
% case either the normalized field or the non-normalized field of an annotated
|
||||
% type can simple be the atom `already_normalized`, which means error messages
|
||||
% can simply render the normalized type expression and know that the error will
|
||||
% make sense.
|
||||
|
||||
annotate_function_specs([], _Types, Specs) ->
|
||||
Specs;
|
||||
annotate_function_specs([{Name, ArgsOpaque, ResultOpaque} | Rest], Types, Specs) ->
|
||||
{ok, Args} = annotate_types(ArgsOpaque, Types, []),
|
||||
{ok, Result} = annotate_type(ResultOpaque, Types),
|
||||
NewSpecs = maps:put(Name, {Args, Result}, Specs),
|
||||
annotate_function_specs(Rest, Types, NewSpecs).
|
||||
|
||||
annotate_type(T, Types) ->
|
||||
case normalize_opaque_type(T, Types) of
|
||||
{ok, AlreadyNormalized, NOpaque, NExpanded} ->
|
||||
flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types);
|
||||
annotate_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types);
|
||||
Error ->
|
||||
Error
|
||||
end.
|
||||
|
||||
flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
|
||||
case flatten_normalized_type(NExpanded, Types) of
|
||||
annotate_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
|
||||
case annotate_type_subexpressions(NExpanded, Types) of
|
||||
{ok, Flat} ->
|
||||
case AlreadyNormalized of
|
||||
true -> {ok, {T, already_normalized, Flat}};
|
||||
@ -1538,48 +1572,48 @@ flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
|
||||
Error
|
||||
end.
|
||||
|
||||
flatten_opaque_types([T | Rest], Types, Acc) ->
|
||||
case flatten_opaque_type(T, Types) of
|
||||
{ok, Type} -> flatten_opaque_types(Rest, Types, [Type | Acc]);
|
||||
annotate_types([T | Rest], Types, Acc) ->
|
||||
case annotate_type(T, Types) of
|
||||
{ok, Type} -> annotate_types(Rest, Types, [Type | Acc]);
|
||||
Error -> Error
|
||||
end;
|
||||
flatten_opaque_types([], _Types, Acc) ->
|
||||
annotate_types([], _Types, Acc) ->
|
||||
{ok, lists:reverse(Acc)}.
|
||||
|
||||
flatten_opaque_bindings([{Name, T} | Rest], Types, Acc) ->
|
||||
case flatten_opaque_type(T, Types) of
|
||||
{ok, Type} -> flatten_opaque_bindings(Rest, Types, [{Name, Type} | Acc]);
|
||||
Error -> Error
|
||||
end;
|
||||
flatten_opaque_bindings([], _Types, Acc) ->
|
||||
{ok, lists:reverse(Acc)}.
|
||||
|
||||
flatten_opaque_variants([{Name, Elems} | Rest], Types, Acc) ->
|
||||
case flatten_opaque_types(Elems, Types, []) of
|
||||
{ok, ElemsFlat} -> flatten_opaque_variants(Rest, Types, [{Name, ElemsFlat} | Acc]);
|
||||
Error -> Error
|
||||
end;
|
||||
flatten_opaque_variants([], _Types, Acc) ->
|
||||
{ok, lists:reverse(Acc)}.
|
||||
|
||||
flatten_normalized_type(PrimitiveType, _Types) when is_atom(PrimitiveType) ->
|
||||
annotate_type_subexpressions(PrimitiveType, _Types) when is_atom(PrimitiveType) ->
|
||||
{ok, PrimitiveType};
|
||||
flatten_normalized_type({variant, VariantsOpaque}, Types) ->
|
||||
case flatten_opaque_variants(VariantsOpaque, Types, []) of
|
||||
annotate_type_subexpressions({variant, VariantsOpaque}, Types) ->
|
||||
case annotate_variants(VariantsOpaque, Types, []) of
|
||||
{ok, Variants} -> {ok, {variant, Variants}};
|
||||
Error -> Error
|
||||
end;
|
||||
flatten_normalized_type({record, FieldsOpaque}, Types) ->
|
||||
case flatten_opaque_bindings(FieldsOpaque, Types, []) of
|
||||
annotate_type_subexpressions({record, FieldsOpaque}, Types) ->
|
||||
case annotate_bindings(FieldsOpaque, Types, []) of
|
||||
{ok, Fields} -> {ok, {record, Fields}};
|
||||
Error -> Error
|
||||
end;
|
||||
flatten_normalized_type({T, ElemsOpaque}, Types) ->
|
||||
case flatten_opaque_types(ElemsOpaque, Types, []) of
|
||||
annotate_type_subexpressions({T, ElemsOpaque}, Types) ->
|
||||
case annotate_types(ElemsOpaque, Types, []) of
|
||||
{ok, Elems} -> {ok, {T, Elems}};
|
||||
Error -> Error
|
||||
end.
|
||||
|
||||
annotate_bindings([{Name, T} | Rest], Types, Acc) ->
|
||||
case annotate_type(T, Types) of
|
||||
{ok, Type} -> annotate_bindings(Rest, Types, [{Name, Type} | Acc]);
|
||||
Error -> Error
|
||||
end;
|
||||
annotate_bindings([], _Types, Acc) ->
|
||||
{ok, lists:reverse(Acc)}.
|
||||
|
||||
annotate_variants([{Name, Elems} | Rest], Types, Acc) ->
|
||||
case annotate_types(Elems, Types, []) of
|
||||
{ok, ElemsFlat} -> annotate_variants(Rest, Types, [{Name, ElemsFlat} | Acc]);
|
||||
Error -> Error
|
||||
end;
|
||||
annotate_variants([], _Types, Acc) ->
|
||||
{ok, lists:reverse(Acc)}.
|
||||
|
||||
normalize_opaque_type(T, Types) ->
|
||||
case type_is_expanded(T) of
|
||||
false -> normalize_opaque_type(T, Types, true);
|
||||
@ -1740,7 +1774,7 @@ coerce({O, N, integer}, S, to_fate) when is_list(S) ->
|
||||
end;
|
||||
coerce({O, N, address}, S, to_fate) ->
|
||||
try
|
||||
case aeser_api_encoder:decode(unicode:characters_to_binary(S)) of
|
||||
case gmser_api_encoder:decode(unicode:characters_to_binary(S)) of
|
||||
{account_pubkey, Key} -> {ok, {address, Key}};
|
||||
_ -> single_error({invalid, O, N, S})
|
||||
end
|
||||
@ -1748,11 +1782,11 @@ coerce({O, N, address}, S, to_fate) ->
|
||||
error:_ -> single_error({invalid, O, N, S})
|
||||
end;
|
||||
coerce({_, _, address}, {address, Bin}, from_fate) ->
|
||||
Address = aeser_api_encoder:encode(account_pubkey, Bin),
|
||||
Address = gmser_api_encoder:encode(account_pubkey, Bin),
|
||||
{ok, unicode:characters_to_list(Address)};
|
||||
coerce({O, N, contract}, S, to_fate) ->
|
||||
try
|
||||
case aeser_api_encoder:decode(unicode:characters_to_binary(S)) of
|
||||
case gmser_api_encoder:decode(unicode:characters_to_binary(S)) of
|
||||
{contract_pubkey, Key} -> {ok, {contract, Key}};
|
||||
_ -> single_error({invalid, O, N, S})
|
||||
end
|
||||
@ -1760,7 +1794,7 @@ coerce({O, N, contract}, S, to_fate) ->
|
||||
error:_ -> single_error({invalid, O, N, S})
|
||||
end;
|
||||
coerce({_, _, contract}, {contract, Bin}, from_fate) ->
|
||||
Address = aeser_api_encoder:encode(contract_pubkey, Bin),
|
||||
Address = gmser_api_encoder:encode(contract_pubkey, Bin),
|
||||
{ok, unicode:characters_to_list(Address)};
|
||||
coerce({_, _, boolean}, true, _) ->
|
||||
{ok, true};
|
||||
@ -2027,8 +2061,7 @@ aaci_lookup_spec({aaci, _, FunDefs, _}, Fun) ->
|
||||
%% @doc
|
||||
%% This function always returns 1,000,000,000 in the current version.
|
||||
%%
|
||||
%% This is the minimum gas price returned by aec_tx_pool:minimum_miner_gas_price(),
|
||||
%% (the default set in aeternity_config_schema.json).
|
||||
%% This is the minimum gas price returned by aec_tx_pool:minimum_miner_gas_price()
|
||||
%%
|
||||
%% Surely there can be some more nuance to this, but until a "gas station" type
|
||||
%% market/chain survey service exists we will use this naive value as a default
|
||||
@ -2062,7 +2095,7 @@ encode_call_data({aaci, _ContractName, FunDefs, _TypeDefs}, Fun, Args) ->
|
||||
|
||||
encode_call_data2(ArgDef, Fun, Args) ->
|
||||
case coerce_bindings(ArgDef, Args, to_fate) of
|
||||
{ok, Coerced} -> aeb_fate_abi:create_calldata(Fun, Coerced);
|
||||
{ok, Coerced} -> gmb_fate_abi:create_calldata(Fun, Coerced);
|
||||
Errors -> Errors
|
||||
end.
|
||||
|
||||
@ -2082,7 +2115,7 @@ encode_call_data2(ArgDef, Fun, Args) ->
|
||||
%% check failed before verification was able to pass or fail (bad key encoding or similar).
|
||||
|
||||
verify_signature(Sig, Message, PubKey) ->
|
||||
case aeser_api_encoder:decode(PubKey) of
|
||||
case gmser_api_encoder:decode(PubKey) of
|
||||
{account_pubkey, PK} -> verify_signature2(Sig, Message, PK);
|
||||
Other -> {error, {bad_key, Other}}
|
||||
end.
|
||||
@ -2091,20 +2124,11 @@ verify_signature2(Sig, Message, PK) ->
|
||||
% Gajumaru signatures require messages to be salted and hashed, then
|
||||
% the hash is what gets signed in order to protect
|
||||
% the user from accidentally signing a transaction disguised as a message.
|
||||
%
|
||||
% Salt the message then hash with blake2b. See:
|
||||
% 1. Erlang Blake2 blake2b/2 function:
|
||||
% https://gitlab.com/ioecs/eblake2/blob/60a079f00d72d1bfcc25de8e6996d28f912db3fd/src/eblake2.erl#L23-L25
|
||||
% 2. SDK salting step:
|
||||
% https://gitlab.com/ioecs/aepp-sdk-js/blob/370f1e30064ad0239ba59931908d9aba0a2e86b6/src/utils/crypto.ts#L171-L175
|
||||
% 3. SDK hashing:
|
||||
% https://gitlab.com/ioecs/aepp-sdk-js/blob/370f1e30064ad0239ba59931908d9aba0a2e86b6/src/utils/crypto.ts#L83-L85
|
||||
Prefix = <<"Gajumaru Signed Message:\n">>,
|
||||
{ok, PSize} = vencode(byte_size(Prefix)),
|
||||
{ok, MSize} = vencode(byte_size(Message)),
|
||||
Smashed = iolist_to_binary([PSize, Prefix, MSize, Message]),
|
||||
{ok, Hashed} = eblake2:blake2b(32, Smashed),
|
||||
% Signature = <<(binary_to_integer(Sig, 16)):(64 * 8)>>,
|
||||
Signature = base64:decode(Sig),
|
||||
Result = ecu_eddsa:sign_verify_detached(Signature, Hashed, PK),
|
||||
{ok, Result}.
|
||||
@ -2194,11 +2218,11 @@ try_coerce(Type, Sophia, Fate) ->
|
||||
ok.
|
||||
|
||||
coerce_int_test() ->
|
||||
{ok, Type} = flatten_opaque_type(integer, #{}),
|
||||
{ok, Type} = annotate_type(integer, #{}),
|
||||
try_coerce(Type, 123, 123).
|
||||
|
||||
coerce_address_test() ->
|
||||
{ok, Type} = flatten_opaque_type(address, #{}),
|
||||
{ok, Type} = annotate_type(address, #{}),
|
||||
try_coerce(Type,
|
||||
"ak_2FTnrGfV8qsfHpaSEHpBrziioCpwwzLqSevHqfxQY3PaAAdARx",
|
||||
{address, <<164,136,155,90,124,22,40,206,255,76,213,56,238,123,
|
||||
@ -2206,7 +2230,7 @@ coerce_address_test() ->
|
||||
210,39,214>>}).
|
||||
|
||||
coerce_contract_test() ->
|
||||
{ok, Type} = flatten_opaque_type(contract, #{}),
|
||||
{ok, Type} = annotate_type(contract, #{}),
|
||||
try_coerce(Type,
|
||||
"ct_2FTnrGfV8qsfHpaSEHpBrziioCpwwzLqSevHqfxQY3PaAAdARx",
|
||||
{contract, <<164,136,155,90,124,22,40,206,255,76,213,56,238,123,
|
||||
@ -2214,35 +2238,35 @@ coerce_contract_test() ->
|
||||
210,39,214>>}).
|
||||
|
||||
coerce_bool_test() ->
|
||||
{ok, Type} = flatten_opaque_type(boolean, #{}),
|
||||
{ok, Type} = annotate_type(boolean, #{}),
|
||||
try_coerce(Type, true, true),
|
||||
try_coerce(Type, false, false).
|
||||
|
||||
coerce_string_test() ->
|
||||
{ok, Type} = flatten_opaque_type(string, #{}),
|
||||
{ok, Type} = annotate_type(string, #{}),
|
||||
try_coerce(Type, "hello world", <<"hello world">>).
|
||||
|
||||
coerce_list_test() ->
|
||||
{ok, Type} = flatten_opaque_type({list, [string]}, #{}),
|
||||
{ok, Type} = annotate_type({list, [string]}, #{}),
|
||||
try_coerce(Type, ["hello world", [65, 32, 65]], [<<"hello world">>, <<65, 32, 65>>]).
|
||||
|
||||
coerce_map_test() ->
|
||||
{ok, Type} = flatten_opaque_type({map, [string, {list, [integer]}]}, #{}),
|
||||
{ok, Type} = annotate_type({map, [string, {list, [integer]}]}, #{}),
|
||||
try_coerce(Type, #{"a" => "a", "b" => "b"}, #{<<"a">> => "a", <<"b">> => "b"}).
|
||||
|
||||
coerce_tuple_test() ->
|
||||
{ok, Type} = flatten_opaque_type({tuple, [integer, string]}, #{}),
|
||||
{ok, Type} = annotate_type({tuple, [integer, string]}, #{}),
|
||||
try_coerce(Type, {123, "456"}, {tuple, {123, <<"456">>}}).
|
||||
|
||||
coerce_variant_test() ->
|
||||
{ok, Type} = flatten_opaque_type({variant, [{"A", [integer]},
|
||||
{ok, Type} = annotate_type({variant, [{"A", [integer]},
|
||||
{"B", [integer, integer]}]},
|
||||
#{}),
|
||||
try_coerce(Type, {"A", 123}, {variant, [1, 2], 0, {123}}),
|
||||
try_coerce(Type, {"B", 456, 789}, {variant, [1, 2], 1, {456, 789}}).
|
||||
|
||||
coerce_record_test() ->
|
||||
{ok, Type} = flatten_opaque_type({record, [{"a", integer}, {"b", integer}]}, #{}),
|
||||
{ok, Type} = annotate_type({record, [{"a", integer}, {"b", integer}]}, #{}),
|
||||
try_coerce(Type, #{"a" => 123, "b" => 456}, {tuple, {123, 456}}).
|
||||
|
||||
|
||||
|
@ -6,8 +6,6 @@
|
||||
|
||||
-export([connect/4, slowly_connect/4]).
|
||||
|
||||
-include("$zx_include/zx_logger.hrl").
|
||||
|
||||
|
||||
connect(Node = {Host, Port}, Request, From, Timeout) ->
|
||||
Timer = erlang:send_after(Timeout, self(), timeout),
|
||||
@ -236,3 +234,10 @@ url({Node, Port}, Path) when is_list(Node) ->
|
||||
["https://", Node, ":", integer_to_list(Port), Path];
|
||||
url({Node, Port}, Path) when is_tuple(Node) ->
|
||||
["https://", inet:ntoa(Node), ":", integer_to_list(Port), Path].
|
||||
|
||||
|
||||
|
||||
log(Level, Format, Args) ->
|
||||
Raw = io_lib:format("~w ~w: " ++ Format, [?MODULE, self() | Args]),
|
||||
Entry = unicode:characters_to_list(Raw),
|
||||
logger:log(Level, Entry).
|
||||
|
@ -29,8 +29,6 @@
|
||||
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
|
||||
code_change/3, terminate/2]).
|
||||
|
||||
%% TODO: Make logging more flexible
|
||||
-include("$zx_include/zx_logger.hrl").
|
||||
|
||||
|
||||
%%% Type and Record Definitions
|
||||
@ -197,7 +195,7 @@ handle_info({'DOWN', Mon, process, PID, Info}, State) ->
|
||||
NewState = handle_down(PID, Mon, Info, State),
|
||||
{noreply, NewState};
|
||||
handle_info(Unexpected, State) ->
|
||||
ok = log("Unexpected info: ~tp~n", [Unexpected]),
|
||||
ok = log(warning, "Unexpected info: ~tp~n", [Unexpected]),
|
||||
{noreply, State}.
|
||||
|
||||
|
||||
@ -287,3 +285,11 @@ do_request(Request,
|
||||
do_request(Request, From, State = #s{chain_nodes = {[], Used}}) ->
|
||||
Fresh = lists:reverse(Used),
|
||||
do_request(Request, From, State#s{chain_nodes = {Fresh, []}}).
|
||||
|
||||
|
||||
|
||||
|
||||
log(Level, Format, Args) ->
|
||||
Raw = io_lib:format("~w ~w: " ++ Format, [?MODULE, self() | Args]),
|
||||
Entry = unicode:characters_to_list(Raw),
|
||||
logger:log(Level, Entry).
|
||||
|
Loading…
x
Reference in New Issue
Block a user