Compare commits

...

3 Commits

Author SHA1 Message Date
SpiveeWorks
77c30abf4a Factor handling of different ACI typedef cases
A lot of this complexity was a consequence of trying to avoid redundant
extraction of the namespace's/contract's name, so on the other hand
letting it be redundant made all of the complexity kind of evaporate.
Add to that that we're now building a little deep list and then
flattening it, and this logic was able to get really neat in a way that
I couldn't work out a year ago.
2025-01-31 13:54:49 +11:00
SpiveeWorks
f2cf25a0f3 Rename 'flatten' and so on to 'annotate' 2025-01-31 13:54:49 +11:00
SpiveeWorks
7a410b08e0 Break up prepare_aaci logic
Now we convert the ACI into trees of opaque types, then flatten the tree
into a map and a list of function specs, and only then dereference the
types in the function specs down to our accelerated annotated types.
2025-01-31 13:54:42 +11:00

View File

@ -1392,99 +1392,100 @@ prepare_contract(File) ->
end.
prepare_aaci(ACI) ->
Types = lists:foldl(fun prepare_namespace_types/2, #{}, ACI),
% We want to take the types represented by the ACI, things like N1.T(N2.T),
% and dereference them down to concrete types like
% {tuple, [integer, string]}. Our type dereferencing algorithms
% shouldn't act directly on the JSON-based structures that the compiler
% gives us, though, though, so before we do the analysis, we should strip
% the ACI down to a list of 'opaque' type defintions and function specs.
{Name, OpaqueSpecs, TypeDefs} = convert_aci_types(ACI),
% Now that we have the opaque types, we can dereference the function specs
% down to the concrete types they actually represent. We annotate each
% subexpression of this concrete type with other info too, in case it helps
% make error messages easier to understand.
Specs = annotate_function_specs(OpaqueSpecs, TypeDefs, #{}),
{aaci, Name, Specs, TypeDefs}.
convert_aci_types(ACI) ->
% Find the main contract, so we can get the specifications of its
% entrypoints.
[{NameBin, SpecDefs}] =
[{N, F}
|| #{contract := #{kind := contract_main,
functions := F,
name := N}} <- ACI],
Name = binary_to_list(NameBin),
Specs = simplify_specs(SpecDefs, #{}, Types),
{aaci, Name, Specs, Types}.
% Turn these specifications into opaque types that we can reason about.
Specs = lists:map(fun convert_function_spec/1, SpecDefs),
prepare_namespace_types(#{namespace := NS}, Types) ->
prepare_namespace_types2(NS, false, Types);
prepare_namespace_types(#{contract := NS}, Types) ->
prepare_namespace_types2(NS, true, Types).
% These specifications can reference other type definitions from the main
% contract and any other namespaces, so extract these types and convert
% them too.
TypeDefTree = lists:map(fun convert_namespace_typedefs/1, ACI),
% The tree structure of the ACI naturally leads to a tree of opaque types,
% but we want a map, so flatten it out before we continue.
TypeDefMap = collect_opaque_types(TypeDefTree, #{}),
prepare_namespace_types2(NS, IsContract, Types) ->
TypeDefs = maps:get(typedefs, NS),
NameBin = maps:get(name, NS),
% This is all the information we actually need from the ACI, the rest is
% just pre-compute and acceleration.
{Name, Specs, TypeDefMap}.
convert_function_spec(#{name := NameBin, arguments := Args, returns := Result}) ->
Name = binary_to_list(NameBin),
Types2 = case IsContract of
true ->
maps:put(Name, {[], contract}, Types);
false ->
Types
end,
Types3 = case maps:find(state, NS) of
{ok, StateDefACI} ->
StateDefOpaque = opaque_type([], StateDefACI),
maps:put(Name ++ ".state", {[], StateDefOpaque}, Types2);
error ->
Types2
end,
simplify_typedefs(TypeDefs, Types3, Name ++ ".").
ArgTypes = lists:map(fun convert_arg/1, Args),
ResultType = opaque_type([], Result),
{Name, ArgTypes, ResultType}.
simplify_typedefs([], Types, _NamePrefix) ->
Types;
simplify_typedefs([Next | Rest], Types, NamePrefix) ->
#{name := NameBin, vars := ParamDefs, typedef := T} = Next,
Name = NamePrefix ++ binary_to_list(NameBin),
Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs],
Type = opaque_type(Params, T),
NewTypes = maps:put(Name, {Params, Type}, Types),
simplify_typedefs(Rest, NewTypes, NamePrefix).
simplify_specs([], Specs, _Types) ->
Specs;
simplify_specs([Next | Rest], Specs, Types) ->
#{name := NameBin, arguments := ArgDefs, returns := ResultDef} = Next,
convert_arg(#{name := NameBin, type := TypeDef}) ->
Name = binary_to_list(NameBin),
ArgTypes = [simplify_args(Arg, Types) || Arg <- ArgDefs],
{ok, ResultType} = type(ResultDef, Types),
NewSpecs = maps:put(Name, {ArgTypes, ResultType}, Specs),
simplify_specs(Rest, NewSpecs, Types).
simplify_args(#{name := NameBin, type := TypeDef}, Types) ->
Name = binary_to_list(NameBin),
% FIXME We should make this error more informative, and continue
% propogating it up, so that the user can provide their own ACI and find
% out whether it worked or not. At that point ACI -> AACI could almost be a
% module or package of its own.
{ok, Type} = type(TypeDef, Types),
{ok, Type} = opaque_type([], TypeDef),
{Name, Type}.
% Type preparation has two goals. First, we need a data structure that can be
% traversed quickly, to take sophia-esque erlang expressions and turn them into
% fate-esque erlang expressions that aebytecode can serialize. Second, we need
% partially substituted names, so that error messages can be generated for why
% "foobar" is not valid as the third field of a `bazquux`, because the third
% field is supposed to be `option(integer)`, not `string`.
%
% To achieve this we need three representations of each type expression, which
% together form an 'annotated type'. First, we need the fully opaque name,
% "bazquux", then we need the normalized name, which is an opaque name with the
% bare-minimum substitution needed to make the outer-most type-constructor an
% identifiable built-in, ADT, or record type, and then we need the flattened
% type, which is the raw {variant, [{Name, Fields}, ...]} or
% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE
% coercion. The type sub-expressions in these flattened types will each be
% fully annotated as well, i.e. they will each contain *all three* of the above
% representations, so that coercion of subexpressions remains fast AND
% informative.
%
% In a lot of cases the opaque type given will already be normalized, in which
% case either the normalized field or the non-normalized field of an annotated
% type can simple be the atom `already_normalized`, which means error messages
% can simply render the normalized type expression and know that the error will
% make sense.
convert_namespace_typedefs(#{namespace := NS}) ->
Name = namespace_name(NS),
convert_typedefs(NS, Name);
convert_namespace_typedefs(#{contract := NS}) ->
Name = namespace_name(NS),
ImplicitTypes = convert_implicit_types(NS, Name),
ExplicitTypes = convert_typedefs(NS, Name),
[ImplicitTypes, ExplicitTypes].
type(T, Types) ->
O = opaque_type([], T),
flatten_opaque_type(O, Types).
namespace_name(#{name := NameBin}) ->
binary_to_list(NameBin).
convert_implicit_types(#{state := StateDefACI}, Name) ->
StateDefOpaque = opaque_type([], StateDefACI),
[{Name, [], contract},
{Name ++ ".state", [], StateDefOpaque}];
convert_implicit_types(_, Name) ->
[{Name, [], contract}].
convert_typedefs(#{typedefs := TypeDefs}, Name) ->
convert_typedefs_loop(TypeDefs, Name ++ ".", []).
% Take a namespace that has already had a period appended, and use that as a
% prefix to convert and annotate a list of types.
convert_typedefs_loop([], _NamePrefix, Converted) ->
Converted;
convert_typedefs_loop([Next | Rest], NamePrefix, Converted) ->
#{name := NameBin, vars := ParamDefs, typedef := DefACI} = Next,
Name = NamePrefix ++ binary_to_list(NameBin),
Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs],
Def = opaque_type(Params, DefACI),
convert_typedefs_loop(Rest, NamePrefix, [Converted, {Name, Params, Def}]).
collect_opaque_types([], Types) ->
Types;
collect_opaque_types([L | R], Types) ->
NewTypes = collect_opaque_types(L, Types),
collect_opaque_types(R, NewTypes);
collect_opaque_types({Name, Params, Def}, Types) ->
maps:put(Name, {Params, Def}, Types).
% Convert an ACI type defintion/spec into the 'opaque type' representation that
% our dereferencing algorithms can reason about.
opaque_type(Params, NameBin) when is_binary(NameBin) ->
Name = opaque_type_name(NameBin),
case not is_atom(Name) and lists:member(Name, Params) of
@ -1508,7 +1509,7 @@ opaque_type(Params, Pair) when is_map(Pair) ->
[{Name, TypeArgs}] = maps:to_list(Pair),
{opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}.
% atoms for builtins, lists for user defined types
% atoms for builtins, strings (lists) for user-defined types
opaque_type_name(<<"int">>) -> integer;
opaque_type_name(<<"address">>) -> address;
opaque_type_name(<<"contract">>) -> contract;
@ -1519,16 +1520,49 @@ opaque_type_name(<<"map">>) -> map;
opaque_type_name(<<"string">>) -> string;
opaque_type_name(Name) -> binary_to_list(Name).
flatten_opaque_type(T, Types) ->
% Type preparation has two goals. First, we need a data structure that can be
% traversed quickly, to take sophia-esque erlang expressions and turn them into
% fate-esque erlang expressions that aebytecode can serialize. Second, we need
% partially substituted names, so that error messages can be generated for why
% "foobar" is not valid as the third field of a `bazquux`, because the third
% field is supposed to be `option(integer)`, not `string`.
%
% To achieve this we need three representations of each type expression, which
% together form an 'annotated type'. First, we need the fully opaque name,
% "bazquux", then we need the normalized name, which is an opaque name with the
% bare-minimum substitution needed to make the outer-most type-constructor an
% identifiable built-in, ADT, or record type, and then we need the dereferenced
% type, which is the raw {variant, [{Name, Fields}, ...]} or
% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE
% coercion. The type sub-expressions in these dereferenced types will each be
% fully annotated as well, i.e. they will each contain *all three* of the above
% representations, so that coercion of subexpressions remains fast and
% informative.
%
% In a lot of cases the opaque type given will already be normalized, in which
% case either the normalized field or the non-normalized field of an annotated
% type can simple be the atom `already_normalized`, which means error messages
% can simply render the normalized type expression and know that the error will
% make sense.
annotate_function_specs([], _Types, Specs) ->
Specs;
annotate_function_specs([{Name, ArgsOpaque, ResultOpaque} | Rest], Types, Specs) ->
{ok, Args} = annotate_types(ArgsOpaque, Types, []),
{ok, Result} = annotate_type(ResultOpaque, Types),
NewSpecs = maps:put(Name, {Args, Result}, Specs),
annotate_function_specs(Rest, Types, NewSpecs).
annotate_type(T, Types) ->
case normalize_opaque_type(T, Types) of
{ok, AlreadyNormalized, NOpaque, NExpanded} ->
flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types);
annotate_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types);
Error ->
Error
end.
flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
case flatten_normalized_type(NExpanded, Types) of
annotate_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
case annotate_type_subexpressions(NExpanded, Types) of
{ok, Flat} ->
case AlreadyNormalized of
true -> {ok, {T, already_normalized, Flat}};
@ -1538,48 +1572,48 @@ flatten_opaque_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
Error
end.
flatten_opaque_types([T | Rest], Types, Acc) ->
case flatten_opaque_type(T, Types) of
{ok, Type} -> flatten_opaque_types(Rest, Types, [Type | Acc]);
annotate_types([T | Rest], Types, Acc) ->
case annotate_type(T, Types) of
{ok, Type} -> annotate_types(Rest, Types, [Type | Acc]);
Error -> Error
end;
flatten_opaque_types([], _Types, Acc) ->
annotate_types([], _Types, Acc) ->
{ok, lists:reverse(Acc)}.
flatten_opaque_bindings([{Name, T} | Rest], Types, Acc) ->
case flatten_opaque_type(T, Types) of
{ok, Type} -> flatten_opaque_bindings(Rest, Types, [{Name, Type} | Acc]);
Error -> Error
end;
flatten_opaque_bindings([], _Types, Acc) ->
{ok, lists:reverse(Acc)}.
flatten_opaque_variants([{Name, Elems} | Rest], Types, Acc) ->
case flatten_opaque_types(Elems, Types, []) of
{ok, ElemsFlat} -> flatten_opaque_variants(Rest, Types, [{Name, ElemsFlat} | Acc]);
Error -> Error
end;
flatten_opaque_variants([], _Types, Acc) ->
{ok, lists:reverse(Acc)}.
flatten_normalized_type(PrimitiveType, _Types) when is_atom(PrimitiveType) ->
annotate_type_subexpressions(PrimitiveType, _Types) when is_atom(PrimitiveType) ->
{ok, PrimitiveType};
flatten_normalized_type({variant, VariantsOpaque}, Types) ->
case flatten_opaque_variants(VariantsOpaque, Types, []) of
annotate_type_subexpressions({variant, VariantsOpaque}, Types) ->
case annotate_variants(VariantsOpaque, Types, []) of
{ok, Variants} -> {ok, {variant, Variants}};
Error -> Error
end;
flatten_normalized_type({record, FieldsOpaque}, Types) ->
case flatten_opaque_bindings(FieldsOpaque, Types, []) of
annotate_type_subexpressions({record, FieldsOpaque}, Types) ->
case annotate_bindings(FieldsOpaque, Types, []) of
{ok, Fields} -> {ok, {record, Fields}};
Error -> Error
end;
flatten_normalized_type({T, ElemsOpaque}, Types) ->
case flatten_opaque_types(ElemsOpaque, Types, []) of
annotate_type_subexpressions({T, ElemsOpaque}, Types) ->
case annotate_types(ElemsOpaque, Types, []) of
{ok, Elems} -> {ok, {T, Elems}};
Error -> Error
end.
annotate_bindings([{Name, T} | Rest], Types, Acc) ->
case annotate_type(T, Types) of
{ok, Type} -> annotate_bindings(Rest, Types, [{Name, Type} | Acc]);
Error -> Error
end;
annotate_bindings([], _Types, Acc) ->
{ok, lists:reverse(Acc)}.
annotate_variants([{Name, Elems} | Rest], Types, Acc) ->
case annotate_types(Elems, Types, []) of
{ok, ElemsFlat} -> annotate_variants(Rest, Types, [{Name, ElemsFlat} | Acc]);
Error -> Error
end;
annotate_variants([], _Types, Acc) ->
{ok, lists:reverse(Acc)}.
normalize_opaque_type(T, Types) ->
case type_is_expanded(T) of
false -> normalize_opaque_type(T, Types, true);
@ -2194,11 +2228,11 @@ try_coerce(Type, Sophia, Fate) ->
ok.
coerce_int_test() ->
{ok, Type} = flatten_opaque_type(integer, #{}),
{ok, Type} = annotate_type(integer, #{}),
try_coerce(Type, 123, 123).
coerce_address_test() ->
{ok, Type} = flatten_opaque_type(address, #{}),
{ok, Type} = annotate_type(address, #{}),
try_coerce(Type,
"ak_2FTnrGfV8qsfHpaSEHpBrziioCpwwzLqSevHqfxQY3PaAAdARx",
{address, <<164,136,155,90,124,22,40,206,255,76,213,56,238,123,
@ -2206,7 +2240,7 @@ coerce_address_test() ->
210,39,214>>}).
coerce_contract_test() ->
{ok, Type} = flatten_opaque_type(contract, #{}),
{ok, Type} = annotate_type(contract, #{}),
try_coerce(Type,
"ct_2FTnrGfV8qsfHpaSEHpBrziioCpwwzLqSevHqfxQY3PaAAdARx",
{contract, <<164,136,155,90,124,22,40,206,255,76,213,56,238,123,
@ -2214,35 +2248,35 @@ coerce_contract_test() ->
210,39,214>>}).
coerce_bool_test() ->
{ok, Type} = flatten_opaque_type(boolean, #{}),
{ok, Type} = annotate_type(boolean, #{}),
try_coerce(Type, true, true),
try_coerce(Type, false, false).
coerce_string_test() ->
{ok, Type} = flatten_opaque_type(string, #{}),
{ok, Type} = annotate_type(string, #{}),
try_coerce(Type, "hello world", <<"hello world">>).
coerce_list_test() ->
{ok, Type} = flatten_opaque_type({list, [string]}, #{}),
{ok, Type} = annotate_type({list, [string]}, #{}),
try_coerce(Type, ["hello world", [65, 32, 65]], [<<"hello world">>, <<65, 32, 65>>]).
coerce_map_test() ->
{ok, Type} = flatten_opaque_type({map, [string, {list, [integer]}]}, #{}),
{ok, Type} = annotate_type({map, [string, {list, [integer]}]}, #{}),
try_coerce(Type, #{"a" => "a", "b" => "b"}, #{<<"a">> => "a", <<"b">> => "b"}).
coerce_tuple_test() ->
{ok, Type} = flatten_opaque_type({tuple, [integer, string]}, #{}),
{ok, Type} = annotate_type({tuple, [integer, string]}, #{}),
try_coerce(Type, {123, "456"}, {tuple, {123, <<"456">>}}).
coerce_variant_test() ->
{ok, Type} = flatten_opaque_type({variant, [{"A", [integer]},
{ok, Type} = annotate_type({variant, [{"A", [integer]},
{"B", [integer, integer]}]},
#{}),
try_coerce(Type, {"A", 123}, {variant, [1, 2], 0, {123}}),
try_coerce(Type, {"B", 456, 789}, {variant, [1, 2], 1, {456, 789}}).
coerce_record_test() ->
{ok, Type} = flatten_opaque_type({record, [{"a", integer}, {"b", integer}]}, #{}),
{ok, Type} = annotate_type({record, [{"a", integer}, {"b", integer}]}, #{}),
try_coerce(Type, #{"a" => 123, "b" => 456}, {tuple, {123, 456}}).