Break up prepare_aaci logic

Now we convert the ACI into trees of opaque types, then flatten the tree
into a map and a list of function specs, and only then dereference the
types in the function specs down to our accelerated annotated types.
This commit is contained in:
SpiveeWorks 2025-01-31 13:54:42 +11:00
parent 7eb29827a6
commit ad7be7c8db

View File

@ -1405,69 +1405,141 @@ prepare_contract(File) ->
end.
prepare_aaci(ACI) ->
Types = lists:foldl(fun prepare_namespace_types/2, #{}, ACI),
% We want to take the types represented by the ACI, things like N1.T(N2.T),
% and dereference them down to concrete types like
% {tuple, [integer, string]}. Our type dereferencing algorithms
% shouldn't act directly on the JSON-based structures that the compiler
% gives us, though, though, so before we do the analysis, we should strip
% the ACI down to a list of 'opaque' type defintions and function specs.
{Name, OpaqueSpecs, TypeDefs} = convert_aci_types(ACI),
% Now that we have the opaque types, we can dereference the function specs
% down to the concrete types they actually represent.
Specs = expand_contract_specs(OpaqueSpecs, TypeDefs, #{}),
{aaci, Name, Specs, TypeDefs}.
expand_contract_specs([], _Types, Specs) ->
Specs;
expand_contract_specs([{Name, ArgsOpaque, ResultOpaque} | Rest], Types, Specs) ->
{ok, Args} = flatten_opaque_types(ArgsOpaque, Types, []),
{ok, Result} = flatten_opaque_type(ResultOpaque, Types),
NewSpecs = maps:put(Name, {Args, Result}, Specs),
expand_contract_specs(Rest, Types, NewSpecs).
convert_aci_types(ACI) ->
% Find the main contract, so we can get the specifications of its
% entrypoints.
[{NameBin, SpecDefs}] =
[{N, F}
|| #{contract := #{kind := contract_main,
functions := F,
name := N}} <- ACI],
Name = binary_to_list(NameBin),
Specs = simplify_specs(SpecDefs, #{}, Types),
{aaci, Name, Specs, Types}.
% Turn these specifications into opaque types that we can reason about.
Specs = lists:map(fun convert_function_spec/1, SpecDefs),
prepare_namespace_types(#{namespace := NS}, Types) ->
prepare_namespace_types2(NS, false, Types);
prepare_namespace_types(#{contract := NS}, Types) ->
prepare_namespace_types2(NS, true, Types).
% These specifications can reference other type definitions from the main
% contract and any other namespaces, so extract these types and convert
% them too.
TypeDefTree = lists:map(fun convert_namespace_typedefs/1, ACI),
% The tree structure of the ACI naturally leads to a tree of opaque types,
% but we want a map, so flatten it out before we continue.
TypeDefMap = collect_opaque_types(TypeDefTree, #{}),
prepare_namespace_types2(NS, IsContract, Types) ->
% This is all the information we actually need from the ACI, the rest is
% just pre-compute and acceleration.
{Name, Specs, TypeDefMap}.
convert_function_spec(#{name := NameBin, arguments := Args, returns := Result}) ->
Name = binary_to_list(NameBin),
ArgTypes = lists:map(fun convert_arg/1, Args),
ResultType = opaque_type([], Result),
{Name, ArgTypes, ResultType}.
convert_arg(#{name := NameBin, type := TypeDef}) ->
Name = binary_to_list(NameBin),
{ok, Type} = opaque_type([], TypeDef),
{Name, Type}.
convert_namespace_typedefs(#{namespace := NS}) ->
convert_namespace_typedefs2(NS, false);
convert_namespace_typedefs(#{contract := NS}) ->
convert_namespace_typedefs2(NS, true).
convert_namespace_typedefs2(NS, IsContract) ->
TypeDefs = maps:get(typedefs, NS),
NameBin = maps:get(name, NS),
Name = binary_to_list(NameBin),
Types2 = case IsContract of
true ->
maps:put(Name, {[], contract}, Types);
false ->
Types
end,
Types3 = case maps:find(state, NS) of
{ok, StateDefACI} ->
StateDefOpaque = opaque_type([], StateDefACI),
maps:put(Name ++ ".state", {[], StateDefOpaque}, Types2);
error ->
Types2
end,
simplify_typedefs(TypeDefs, Types3, Name ++ ".").
ContractAsType = case IsContract of
true -> {Name, [], contract};
false -> []
end,
State = case maps:find(state, NS) of
{ok, StateDefACI} ->
StateDefOpaque = opaque_type([], StateDefACI),
{Name ++ ".state", [], StateDefOpaque};
error ->
[]
end,
ExplicitTypeDefs = convert_explicit_typedefs(TypeDefs, Name ++ ".", []),
% Throw all the weird sources of types into one messy deeplist.
[ContractAsType, State, ExplicitTypeDefs].
simplify_typedefs([], Types, _NamePrefix) ->
% The easiest step, turn a deep list of opaque types into a map.
collect_opaque_types([], Types) ->
Types;
simplify_typedefs([Next | Rest], Types, NamePrefix) ->
#{name := NameBin, vars := ParamDefs, typedef := T} = Next,
collect_opaque_types([L | R], Types) ->
NewTypes = collect_opaque_types(L, Types),
collect_opaque_types(R, NewTypes);
collect_opaque_types({Name, Params, Def}, Types) ->
maps:put(Name, {Params, Def}, Types).
convert_explicit_typedefs([], _NamePrefix, Converted) ->
Converted;
convert_explicit_typedefs([Next | Rest], NamePrefix, Converted) ->
#{name := NameBin, vars := ParamDefs, typedef := DefACI} = Next,
Name = NamePrefix ++ binary_to_list(NameBin),
Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs],
Type = opaque_type(Params, T),
NewTypes = maps:put(Name, {Params, Type}, Types),
simplify_typedefs(Rest, NewTypes, NamePrefix).
Def = opaque_type(Params, DefACI),
convert_explicit_typedefs(Rest, NamePrefix, [Converted, {Name, Params, Def}]).
simplify_specs([], Specs, _Types) ->
Specs;
simplify_specs([Next | Rest], Specs, Types) ->
#{name := NameBin, arguments := ArgDefs, returns := ResultDef} = Next,
Name = binary_to_list(NameBin),
ArgTypes = [simplify_args(Arg, Types) || Arg <- ArgDefs],
{ok, ResultType} = type(ResultDef, Types),
NewSpecs = maps:put(Name, {ArgTypes, ResultType}, Specs),
simplify_specs(Rest, NewSpecs, Types).
% Convert an ACI type defintion/spec into the 'opaque type' representation that
% our dereferencing algorithms can reason about.
opaque_type(Params, NameBin) when is_binary(NameBin) ->
Name = opaque_type_name(NameBin),
case not is_atom(Name) and lists:member(Name, Params) of
false -> Name;
true -> {var, Name}
end;
opaque_type(Params, #{record := FieldDefs}) ->
Fields = [{binary_to_list(Name), opaque_type(Params, Type)}
|| #{name := Name, type := Type} <- FieldDefs],
{record, Fields};
opaque_type(Params, #{variant := VariantDefs}) ->
ConvertVariant = fun(Pair) ->
[{Name, Types}] = maps:to_list(Pair),
{binary_to_list(Name), [opaque_type(Params, Type) || Type <- Types]}
end,
Variants = lists:map(ConvertVariant, VariantDefs),
{variant, Variants};
opaque_type(Params, #{tuple := TypeDefs}) ->
{tuple, [opaque_type(Params, Type) || Type <- TypeDefs]};
opaque_type(Params, Pair) when is_map(Pair) ->
[{Name, TypeArgs}] = maps:to_list(Pair),
{opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}.
simplify_args(#{name := NameBin, type := TypeDef}, Types) ->
Name = binary_to_list(NameBin),
% FIXME We should make this error more informative, and continue
% propogating it up, so that the user can provide their own ACI and find
% out whether it worked or not. At that point ACI -> AACI could almost be a
% module or package of its own.
{ok, Type} = type(TypeDef, Types),
{Name, Type}.
% atoms for builtins, strings (lists) for user-defined types
opaque_type_name(<<"int">>) -> integer;
opaque_type_name(<<"address">>) -> address;
opaque_type_name(<<"contract">>) -> contract;
opaque_type_name(<<"bool">>) -> boolean;
opaque_type_name(<<"option">>) -> option;
opaque_type_name(<<"list">>) -> list;
opaque_type_name(<<"map">>) -> map;
opaque_type_name(<<"string">>) -> string;
opaque_type_name(Name) -> binary_to_list(Name).
% Type preparation has two goals. First, we need a data structure that can be
% traversed quickly, to take sophia-esque erlang expressions and turn them into
@ -1494,44 +1566,6 @@ simplify_args(#{name := NameBin, type := TypeDef}, Types) ->
% can simply render the normalized type expression and know that the error will
% make sense.
type(T, Types) ->
O = opaque_type([], T),
flatten_opaque_type(O, Types).
opaque_type(Params, NameBin) when is_binary(NameBin) ->
Name = opaque_type_name(NameBin),
case not is_atom(Name) and lists:member(Name, Params) of
false -> Name;
true -> {var, Name}
end;
opaque_type(Params, #{record := FieldDefs}) ->
Fields = [{binary_to_list(Name), opaque_type(Params, Type)}
|| #{name := Name, type := Type} <- FieldDefs],
{record, Fields};
opaque_type(Params, #{variant := VariantDefs}) ->
ConvertVariant = fun(Pair) ->
[{Name, Types}] = maps:to_list(Pair),
{binary_to_list(Name), [opaque_type(Params, Type) || Type <- Types]}
end,
Variants = lists:map(ConvertVariant, VariantDefs),
{variant, Variants};
opaque_type(Params, #{tuple := TypeDefs}) ->
{tuple, [opaque_type(Params, Type) || Type <- TypeDefs]};
opaque_type(Params, Pair) when is_map(Pair) ->
[{Name, TypeArgs}] = maps:to_list(Pair),
{opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}.
% atoms for builtins, lists for user defined types
opaque_type_name(<<"int">>) -> integer;
opaque_type_name(<<"address">>) -> address;
opaque_type_name(<<"contract">>) -> contract;
opaque_type_name(<<"bool">>) -> boolean;
opaque_type_name(<<"option">>) -> option;
opaque_type_name(<<"list">>) -> list;
opaque_type_name(<<"map">>) -> map;
opaque_type_name(<<"string">>) -> string;
opaque_type_name(Name) -> binary_to_list(Name).
flatten_opaque_type(T, Types) ->
case normalize_opaque_type(T, Types) of
{ok, AlreadyNormalized, NOpaque, NExpanded} ->