Add a map for builtin types

This makes it much easier to implement all these standard library
things.

In doing so I changed the convention for option, hash, unit, to be
stringy rather than atoms.

Also I changed some error messages based on what was more helpful during
debugging of the unit tests.
This commit is contained in:
Jarvis Carroll 2025-09-24 16:27:32 +10:00
parent 7ffc96b68a
commit 057861e9cf

View File

@ -1419,7 +1419,8 @@ prepare_aaci(ACI) ->
% down to the concrete types they actually represent. We annotate each
% subexpression of this concrete type with other info too, in case it helps
% make error messages easier to understand.
Specs = annotate_function_specs(OpaqueSpecs, TypeDefs, #{}),
InternalTypeDefs = maps:merge(builtin_typedefs(), TypeDefs),
Specs = annotate_function_specs(OpaqueSpecs, InternalTypeDefs, #{}),
{aaci, Name, Specs, TypeDefs}.
@ -1526,34 +1527,39 @@ opaque_type(Params, Pair) when is_map(Pair) ->
[{Name, TypeArgs}] = maps:to_list(Pair),
{opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}.
% Atoms for builtins, strings (lists) for user-defined types.
%
% There are some magic built in types that may or may not also need atoms to
% represent them, and may or may not need to be handled explicitly in
% coerce/3, if we can't flatten them directly
%
% These types represent some FATE variant:
% Chain.ttl, AENS.pointee, AENS.name, AENSv2.pointee, AENSv2.name,
% Chain.ga_meta_tx, Chain.paying_for_tx, Chain.base_tx,
%
% And then MCL_BLS12_381.fr represent bytes(32), and MCL_BLS12_381.fp
% represents bytes(48).
% Atoms for any builtins that aren't qualified by a namespace in Sophia.
% Everything else stays as a string, user-defined or not.
opaque_type_name(<<"int">>) -> integer;
opaque_type_name(<<"bool">>) -> boolean;
opaque_type_name(<<"bits">>) -> bits;
opaque_type_name(<<"char">>) -> char;
opaque_type_name(<<"string">>) -> string;
opaque_type_name(<<"address">>) -> address;
opaque_type_name(<<"hash">>) -> hash;
opaque_type_name(<<"signature">>) -> signature;
opaque_type_name(<<"contract">>) -> contract;
opaque_type_name(<<"list">>) -> list;
opaque_type_name(<<"map">>) -> map;
opaque_type_name(<<"option">>) -> option;
opaque_type_name(<<"name">>) -> name;
% I'm not sure how to produce channels in Sophia source, but they seem to exist
% in gmb still.
opaque_type_name(<<"channel">>) -> channel;
opaque_type_name(Name) -> binary_to_list(Name).
builtin_typedefs() ->
#{"unit" => {[], {tuple, []}},
"hash" => {[], {bytes, [32]}},
"option" => {["'T"], {variant, [{"None", []},
{"Some", [{var, "'T"}]}]}},
"Chain.ttl" => {[], {variant, [{"FixedTTL", [{list, [integer]}]},
{"RelativeTTL", [{list, [integer]}]}]}},
"AENS.pointee" => {[], {variant, [{"AccountPt", [{list, [address]}]},
{"OraclePt", [{list, [address]}]},
{"ContractPt", [{list, [address]}]},
{"ChannelPt", [{list, [address]}]}]}},
"AENS.name" => {[], {variant, [{"Name", [address,
"Chain.ttl",
{map, [string, "AENS.pointee"]}]}]}}
}.
% Type preparation has two goals. First, we need a data structure that can be
% traversed quickly, to take sophia-esque erlang expressions and turn them into
% fate-esque erlang expressions that gmbytecode can serialize. Second, we need
@ -1595,6 +1601,10 @@ annotate_type(T, Types) ->
Error
end.
annotate_type2(T, _, _, unknown_type, _) ->
% If a type is unknown, then it should not be reported as the normalized
% name.
{ok, {T, unknown_type, unknown_type}};
annotate_type2(T, AlreadyNormalized, NOpaque, NExpanded, Types) ->
case annotate_type_subexpressions(NExpanded, Types) of
{ok, Flat} ->
@ -1654,23 +1664,17 @@ annotate_variants([], _Types, Acc) ->
% This function evaluates type aliases in a loop, until eventually a usable
% definition is found.
%
% It also evaluates built-in and standard library types such as options and
% names, to their defined variant representation, as well as evaluating
% certain binary types like hash, fp, and fr, into their byte representations.
normalize_opaque_type(T, Types) -> normalize_opaque_type(T, Types, true).
% FIXME detect infinite loops
% FIXME detect builtins with the wrong number of arguments
% FIXME should nullary types have an empty list of arguments added before now?
normalize_opaque_type({option, [T]}, _Types, IsFirst) ->
% Just like user-made ADTs, 'option' is considered part of the type, and so
% options are considered normalised.
{ok, IsFirst, {option, [T]}, {variant, [{"None", []}, {"Some", [T]}]}};
normalize_opaque_type(hash, _Types, IsFirst) ->
% For coercion purposes, hash is indistinguishable from bytes(32), so we
% treat it like a type alias.
{ok, IsFirst, hash, {bytes, [32]}};
% These types represent some FATE variant:
% Chain.ttl, AENS.pointee, AENS.name, AENSv2.pointee, AENSv2.name,
% Chain.ga_meta_tx, Chain.paying_for_tx, Chain.base_tx,
%
% And then MCL_BLS12_381.fr represent bytes(32), and MCL_BLS12_381.fp
% represents bytes(48).
normalize_opaque_type(T, _Types, IsFirst) when is_atom(T) ->
% Once we have eliminated the above rewrite cases, all other cases are
% handled explicitly by the coerce logic, and so are considered normalized.
@ -1825,6 +1829,10 @@ coerce({O, N, signature}, S, to_fate) ->
coerce({_, _, signature}, Bin, from_fate) ->
Address = gmser_api_encoder:encode(signature, Bin),
{ok, unicode:characters_to_list(Address)};
%coerce({_, _, channel}, S, to_fate) when is_binary(S) ->
%{ok, {channel, S}};
%coerce({_, _, channel}, {channel, S}, from_fate) when is_binary(S) ->
%{ok, S};
coerce({_, _, boolean}, true, _) ->
{ok, true};
coerce({_, _, boolean}, "true", _) ->
@ -2551,6 +2559,11 @@ coerce_variant_test() ->
try_coerce(Type, {"A", 123}, {variant, [1, 2], 0, {123}}),
try_coerce(Type, {"B", 456, 789}, {variant, [1, 2], 1, {456, 789}}).
coerce_option_test() ->
{ok, Type} = annotate_type({"option", [integer]}, builtin_typedefs()),
try_coerce(Type, {"None"}, {variant, [0, 1], 0, {}}),
try_coerce(Type, {"Some", 1}, {variant, [0, 1], 1, {1}}).
coerce_record_test() ->
{ok, Type} = annotate_type({record, [{"a", integer}, {"b", integer}]}, #{}),
try_coerce(Type, #{"a" => 123, "b" => 456}, {tuple, {123, 456}}).
@ -2574,7 +2587,7 @@ coerce_unicode_test() ->
ok.
coerce_hash_test() ->
{ok, Type} = annotate_type(hash, #{}),
{ok, Type} = annotate_type("hash", builtin_typedefs()),
Hash = list_to_binary(lists:seq(1,32)),
try_coerce(Type, Hash, Hash),
ok.
@ -2677,19 +2690,26 @@ obscure_aaci_test() ->
entrypoint bits(): bits = Bits.all
entrypoint character(): char = 'a'
entrypoint hash(): hash = #00112233445566778899AABBCCDDEEFF00112233445566778899AABBCCDDEEFF
entrypoint unit(): unit = ()
entrypoint ttl(x): Chain.ttl = FixedTTL(x)
entrypoint pointee(x): AENS.pointee = AENS.AccountPt(x)
entrypoint name(x, y, z): AENS.name = AENS.Name(x, y, z)
",
{ok, AACI} = aaci_from_string(Contract),
{ok, {[], {{option, [integer]}, _, _}}} = aaci_lookup_spec(AACI, "options"),
{ok, {[], {{bytes, [4]}, _, _}}} = aaci_lookup_spec(AACI, "fixed_bytes"),
{ok, {[], {{bytes, [any]}, _, _}}} = aaci_lookup_spec(AACI, "any_bytes"),
{ok, {[], {bits, _, _}}} = aaci_lookup_spec(AACI, "bits"),
{ok, {[], {char, _, _}}} = aaci_lookup_spec(AACI, "character"),
{ok, {[], {hash, _, _}}} = aaci_lookup_spec(AACI, "hash"),
{ok, {[], {{"option", [integer]}, _, {variant, [{"None", []}, {"Some", [_]}]}}}} = aaci_lookup_spec(AACI, "options"),
{ok, {[], {"hash", _, {bytes, [32]}}}} = aaci_lookup_spec(AACI, "hash"),
{ok, {[], {"unit", _, {tuple, []}}}} = aaci_lookup_spec(AACI, "unit"),
{ok, {_, {"Chain.ttl", _, {variant, _}}}} = aaci_lookup_spec(AACI, "ttl"),
{ok, {_, {"AENS.pointee", _, {variant, _}}}} = aaci_lookup_spec(AACI, "pointee"),
{ok, {_, {"AENS.name", _, {variant, _}}}} = aaci_lookup_spec(AACI, "name"),
ok.