
* Type check and compile letfuns * Minor code simplification * Remove let rec from Sophia
1298 lines
52 KiB
Erlang
1298 lines
52 KiB
Erlang
%%%-------------------------------------------------------------------
|
|
%%% @author Ulf Norell
|
|
%%% @copyright (C) 2019, Aeternity Anstalt
|
|
%%% @doc
|
|
%%% Compiler from Aeterinty Sophia language to Fate intermediate code.
|
|
%%% @end
|
|
%%% Created : 26 Mar 2019
|
|
%%%
|
|
%%%-------------------------------------------------------------------
|
|
-module(aeso_ast_to_fcode).
|
|
|
|
-export([ast_to_fcode/2, format_fexpr/1]).
|
|
-export_type([fcode/0, fexpr/0, fun_def/0]).
|
|
|
|
%% -- Type definitions -------------------------------------------------------
|
|
|
|
-type option() :: term().
|
|
|
|
-type attribute() :: stateful | pure.
|
|
|
|
-type fun_name() :: {entrypoint, binary()}
|
|
| {local_fun, [string()]}
|
|
| init.
|
|
-type var_name() :: string().
|
|
-type sophia_name() :: [string()].
|
|
|
|
-type builtin() :: atom().
|
|
|
|
-type op() :: '+' | '-' | '*' | '/' | mod | '^' | '++' | '::' |
|
|
'<' | '>' | '=<' | '>=' | '==' | '!=' | '!' |
|
|
map_get | map_get_d | map_set | map_from_list | map_to_list |
|
|
map_delete | map_member | map_size | string_length |
|
|
string_concat | bits_set | bits_clear | bits_test | bits_sum |
|
|
bits_intersection | bits_union | bits_difference.
|
|
|
|
-type flit() :: {int, integer()}
|
|
| {string, binary()}
|
|
| {account_pubkey, binary()}
|
|
| {contract_pubkey, binary()}
|
|
| {oracle_pubkey, binary()}
|
|
| {oracle_query_id, binary()}
|
|
| {bool, false | true}.
|
|
|
|
-type fexpr() :: {lit, flit()}
|
|
| nil
|
|
| {var, var_name()}
|
|
| {def, fun_name(), [fexpr()]}
|
|
| {remote, fexpr(), fun_name(), [fexpr()]}
|
|
| {builtin, builtin(), [fexpr()]}
|
|
| {con, arities(), tag(), [fexpr()]}
|
|
| {tuple, [fexpr()]}
|
|
| {proj, fexpr(), integer()}
|
|
| {set_proj, fexpr(), integer(), fexpr()} %% tuple, field, new_value
|
|
| {op, op(), [fexpr()]}
|
|
| {'let', var_name(), fexpr(), fexpr()}
|
|
| {funcall, fexpr(), [fexpr()]} %% Call to unknown function
|
|
| {closure, fun_name(), fexpr()}
|
|
| {switch, fsplit()}
|
|
%% The following (unapplied top-level functions/builtins and
|
|
%% lambdas) are generated by the fcode compiler, but translated
|
|
%% to closures by the lambda lifter.
|
|
| {def_u, fun_name(), arity()}
|
|
| {remote_u, fexpr(), fun_name(), arity()}
|
|
| {builtin_u, builtin(), arity()}
|
|
| {lam, [var_name()], fexpr()}.
|
|
|
|
-type fsplit() :: {split, ftype(), var_name(), [fcase()]}
|
|
| {nosplit, fexpr()}.
|
|
|
|
-type fcase() :: {'case', fsplit_pat(), fsplit()}.
|
|
|
|
-type fsplit_pat() :: {var, var_name()}
|
|
| {bool, false | true}
|
|
| {int, integer()}
|
|
| {string, binary()}
|
|
| nil
|
|
| {'::', var_name(), var_name()}
|
|
| {con, arities(), tag(), [var_name()]}
|
|
| {tuple, [var_name()]}.
|
|
|
|
-type ftype() :: integer
|
|
| boolean
|
|
| string
|
|
| {list, ftype()}
|
|
| {map, ftype(), ftype()}
|
|
| {tuple, [ftype()]}
|
|
| address
|
|
| hash
|
|
| signature
|
|
| contract
|
|
| oracle
|
|
| oracle_query
|
|
| name
|
|
| channel
|
|
| bits
|
|
| {variant, [[ftype()]]}
|
|
| {function, [ftype()], ftype()}
|
|
| any.
|
|
|
|
-type fun_def() :: #{ attrs := [attribute()],
|
|
args := [{var_name(), ftype()}],
|
|
return := ftype(),
|
|
body := fexpr() }.
|
|
|
|
-type fcode() :: #{ contract_name := string(),
|
|
state_type := ftype(),
|
|
event_type := ftype() | none,
|
|
functions := #{ fun_name() => fun_def() } }.
|
|
|
|
-type type_def() :: fun(([ftype()]) -> ftype()).
|
|
|
|
-type tag() :: non_neg_integer().
|
|
-type arities() :: [arity()].
|
|
|
|
-record(con_tag, { tag :: tag(), arities :: arities() }).
|
|
-type con_tag() :: #con_tag{}.
|
|
|
|
-type type_env() :: #{ sophia_name() => type_def() }.
|
|
-type fun_env() :: #{ sophia_name() => {fun_name(), non_neg_integer()} }.
|
|
-type con_env() :: #{ sophia_name() => con_tag() }.
|
|
-type builtins() :: #{ sophia_name() => {builtin(), non_neg_integer() | none} }.
|
|
|
|
-type context() :: {main_contract, string()}
|
|
| {namespace, string()}
|
|
| {abstract_contract, string()}.
|
|
|
|
-type env() :: #{ type_env := type_env(),
|
|
fun_env := fun_env(),
|
|
con_env := con_env(),
|
|
builtins := builtins(),
|
|
options := [option()],
|
|
context => context(),
|
|
vars => [var_name()],
|
|
functions := #{ fun_name() => fun_def() } }.
|
|
|
|
%% -- Entrypoint -------------------------------------------------------------
|
|
|
|
%% Main entrypoint. Takes typed syntax produced by aeso_ast_infer_types:infer/1,2
|
|
%% and produces Fate intermediate code.
|
|
-spec ast_to_fcode(aeso_syntax:ast(), [option()]) -> fcode().
|
|
ast_to_fcode(Code, Options) ->
|
|
Verbose = lists:member(pp_fcode, Options),
|
|
FCode1 = to_fcode(init_env(Options), Code),
|
|
[io:format("-- Before lambda lifting --\n~s\n\n", [format_fcode(FCode1)]) || Verbose],
|
|
FCode2 = lambda_lift(FCode1),
|
|
[ io:format("-- After lambda lifting --\n~s\n\n", [format_fcode(FCode2)]) || Verbose, FCode2 /= FCode1 ],
|
|
FCode3 = optimize_fcode(FCode2),
|
|
[ io:format("-- After optimization --\n~s\n\n", [format_fcode(FCode3)]) || Verbose, FCode3 /= FCode2 ],
|
|
FCode3.
|
|
|
|
%% -- Environment ------------------------------------------------------------
|
|
|
|
-spec init_env([option()]) -> env().
|
|
init_env(Options) ->
|
|
#{ type_env => init_type_env(),
|
|
fun_env => #{},
|
|
builtins => builtins(),
|
|
con_env => #{["None"] => #con_tag{ tag = 0, arities = [0, 1] },
|
|
["Some"] => #con_tag{ tag = 1, arities = [0, 1] },
|
|
["RelativeTTL"] => #con_tag{ tag = 0, arities = [1, 1] },
|
|
["FixedTTL"] => #con_tag{ tag = 1, arities = [1, 1] }
|
|
},
|
|
options => Options,
|
|
functions => #{} }.
|
|
|
|
-spec builtins() -> builtins().
|
|
builtins() ->
|
|
MkName = fun(NS, Fun) ->
|
|
list_to_atom(string:to_lower(string:join(NS ++ [Fun], "_")))
|
|
end,
|
|
Scopes = [{[], [{"abort", 1}]},
|
|
{["Chain"], [{"spend", 2}, {"balance", 1}, {"block_hash", 1}, {"coinbase", none},
|
|
{"timestamp", none}, {"block_height", none}, {"difficulty", none},
|
|
{"gas_limit", none}]},
|
|
{["Contract"], [{"address", none}, {"balance", none}]},
|
|
{["Call"], [{"origin", none}, {"caller", none}, {"value", none}, {"gas_price", none},
|
|
{"gas_left", 0}]},
|
|
{["Oracle"], [{"register", 4}, {"query_fee", 1}, {"query", 5}, {"get_question", 2},
|
|
{"respond", 4}, {"extend", 3}, {"get_answer", 2}]},
|
|
{["AENS"], [{"resolve", 2}, {"preclaim", 3}, {"claim", 4}, {"transfer", 4},
|
|
{"revoke", 3}]},
|
|
{["Map"], [{"from_list", 1}, {"to_list", 1}, {"lookup", 2},
|
|
{"lookup_default", 3}, {"delete", 2}, {"member", 2}, {"size", 1}]},
|
|
{["Crypto"], [{"ecverify", 3}, {"ecverify_secp256k1", 3}, {"sha3", 1},
|
|
{"sha256", 1}, {"blake2b", 1}]},
|
|
{["Auth"], [{"tx_hash", none}]},
|
|
{["String"], [{"length", 1}, {"concat", 2}, {"sha3", 1}, {"sha256", 1}, {"blake2b", 1}]},
|
|
{["Bits"], [{"set", 2}, {"clear", 2}, {"test", 2}, {"sum", 1}, {"intersection", 2},
|
|
{"union", 2}, {"difference", 2}, {"none", none}, {"all", none}]},
|
|
{["Int"], [{"to_str", 1}]},
|
|
{["Address"], [{"to_str", 1}]}
|
|
],
|
|
maps:from_list([ {NS ++ [Fun], {MkName(NS, Fun), Arity}}
|
|
|| {NS, Funs} <- Scopes,
|
|
{Fun, Arity} <- Funs ]).
|
|
|
|
-define(type(T), fun([]) -> T end).
|
|
-define(type(X, T), fun([X]) -> T end).
|
|
-define(type(X, Y, T), fun([X, Y]) -> T end).
|
|
|
|
-spec init_type_env() -> type_env().
|
|
init_type_env() ->
|
|
#{ ["int"] => ?type(integer),
|
|
["bool"] => ?type(boolean),
|
|
["bits"] => ?type(bits),
|
|
["char"] => ?type(integer),
|
|
["string"] => ?type(string),
|
|
["address"] => ?type(address),
|
|
["hash"] => ?type(hash),
|
|
["signature"] => ?type(signature),
|
|
["oracle"] => ?type(_, _, oracle),
|
|
["oracle_query"] => ?type(_, _, oracle_query), %% TODO: not in Fate
|
|
["list"] => ?type(T, {list, T}),
|
|
["map"] => ?type(K, V, {map, K, V}),
|
|
["option"] => ?type(T, {variant, [[], [T]]}),
|
|
["Chain", "ttl"] => ?type({variant, [[integer], [integer]]})
|
|
}.
|
|
|
|
%% -- Compilation ------------------------------------------------------------
|
|
|
|
-spec to_fcode(env(), aeso_syntax:ast()) -> fcode().
|
|
to_fcode(Env, [{contract, _, {con, _, Main}, Decls}]) ->
|
|
#{ builtins := Builtins } = Env,
|
|
MainEnv = Env#{ context => {main_contract, Main},
|
|
builtins => Builtins#{[Main, "state"] => {get_state, none},
|
|
[Main, "put"] => {set_state, 1},
|
|
[Main, "Chain", "event"] => {event, 1}} },
|
|
#{ functions := Funs } = Env1 =
|
|
decls_to_fcode(MainEnv, Decls),
|
|
StateType = lookup_type(Env1, [Main, "state"], [], {tuple, []}),
|
|
EventType = lookup_type(Env1, [Main, "event"], [], none),
|
|
#{ contract_name => Main,
|
|
state_type => StateType,
|
|
event_type => EventType,
|
|
functions => Funs };
|
|
to_fcode(Env, [{contract, _, {con, _, Con}, Decls} | Code]) ->
|
|
Env1 = decls_to_fcode(Env#{ context => {abstract_contract, Con} }, Decls),
|
|
to_fcode(Env1, Code);
|
|
to_fcode(Env, [{namespace, _, {con, _, Con}, Decls} | Code]) ->
|
|
Env1 = decls_to_fcode(Env#{ context => {namespace, Con} }, Decls),
|
|
to_fcode(Env1, Code).
|
|
|
|
-spec decls_to_fcode(env(), [aeso_syntax:decl()]) -> env().
|
|
decls_to_fcode(Env, Decls) ->
|
|
%% First compute mapping from Sophia names to fun_names and add it to the
|
|
%% environment.
|
|
Env1 = add_fun_env(Env, Decls),
|
|
lists:foldl(fun(D, E) ->
|
|
init_fresh_names(),
|
|
R = decl_to_fcode(E, D),
|
|
clear_fresh_names(),
|
|
R
|
|
end, Env1, Decls).
|
|
|
|
-spec decl_to_fcode(env(), aeso_syntax:decl()) -> env().
|
|
decl_to_fcode(Env, {type_decl, _, _, _}) -> Env;
|
|
decl_to_fcode(Env, {fun_decl, _, _, _}) -> Env;
|
|
decl_to_fcode(Env, {type_def, _Ann, Name, Args, Def}) ->
|
|
typedef_to_fcode(Env, Name, Args, Def);
|
|
decl_to_fcode(Env = #{ functions := Funs }, {letfun, Ann, {id, _, Name}, Args, Ret, Body}) ->
|
|
Attrs = get_attributes(Ann),
|
|
FName = lookup_fun(Env, qname(Env, Name)),
|
|
FArgs = args_to_fcode(Env, Args),
|
|
FBody = expr_to_fcode(Env#{ vars => [X || {X, _} <- FArgs] }, Body),
|
|
Def = #{ attrs => Attrs,
|
|
args => FArgs,
|
|
return => type_to_fcode(Env, Ret),
|
|
body => FBody },
|
|
NewFuns = Funs#{ FName => Def },
|
|
Env#{ functions := NewFuns }.
|
|
|
|
-spec typedef_to_fcode(env(), aeso_syntax:id(), [aeso_syntax:tvar()], aeso_syntax:typedef()) -> env().
|
|
typedef_to_fcode(Env, {id, _, Name}, Xs, Def) ->
|
|
Q = qname(Env, Name),
|
|
FDef = fun(Args) ->
|
|
Sub = maps:from_list(lists:zip([X || {tvar, _, X} <- Xs], Args)),
|
|
case Def of
|
|
{record_t, Fields} -> {todo, Xs, Args, record_t, Fields};
|
|
{variant_t, Cons} ->
|
|
FCons = [ begin
|
|
{constr_t, _, _, Ts} = Con,
|
|
[type_to_fcode(Env, Sub, T) || T <- Ts]
|
|
end || Con <- Cons ],
|
|
{variant, FCons};
|
|
{alias_t, Type} -> {todo, Xs, Args, alias_t, Type}
|
|
end end,
|
|
Constructors =
|
|
case Def of
|
|
{variant_t, Cons} ->
|
|
Arities = [ begin
|
|
{constr_t, _, _, Args} = Con,
|
|
length(Args)
|
|
end || Con <- Cons ],
|
|
Tags = [ #con_tag{ tag = I, arities = Arities } || I <- lists:seq(0, length(Cons) - 1) ],
|
|
GetName = fun({constr_t, _, {con, _, C}, _}) -> C end,
|
|
QName = fun(Con) -> qname(Env, GetName(Con)) end,
|
|
maps:from_list([ {QName(Con), Tag} || {Tag, Con} <- lists:zip(Tags, Cons) ]);
|
|
_ -> #{}
|
|
end,
|
|
Env1 = bind_constructors(Env, Constructors),
|
|
bind_type(Env1, Q, FDef).
|
|
|
|
-spec type_to_fcode(env(), aeso_syntax:type()) -> ftype().
|
|
type_to_fcode(Env, Type) ->
|
|
type_to_fcode(Env, #{}, Type).
|
|
|
|
-spec type_to_fcode(env(), #{var_name() => ftype()}, aeso_syntax:type()) -> ftype().
|
|
type_to_fcode(_Env, _Sub, {con, _, _}) -> contract;
|
|
type_to_fcode(Env, Sub, {app_t, _, T = {Id, _, _}, Types}) when Id == id; Id == qid ->
|
|
lookup_type(Env, T, [type_to_fcode(Env, Sub, Type) || Type <- Types]);
|
|
type_to_fcode(Env, _Sub, T = {Id, _, _}) when Id == id; Id == qid ->
|
|
lookup_type(Env, T, []);
|
|
type_to_fcode(Env, Sub, {tuple_t, _, Types}) ->
|
|
{tuple, [type_to_fcode(Env, Sub, T) || T <- Types]};
|
|
type_to_fcode(Env, Sub, {record_t, Fields}) ->
|
|
FieldType = fun({field_t, _, _, Ty}) -> Ty end,
|
|
type_to_fcode(Env, Sub, {tuple_t, [], lists:map(FieldType, Fields)});
|
|
type_to_fcode(_Env, _Sub, {bytes_t, _, _N}) ->
|
|
string; %% TODO: add bytes type to FATE?
|
|
type_to_fcode(_Env, Sub, {tvar, _, X}) ->
|
|
maps:get(X, Sub, any);
|
|
type_to_fcode(Env, Sub, {fun_t, _, Named, Args, Res}) ->
|
|
FNamed = [type_to_fcode(Env, Sub, Arg) || {named_arg_t, _, _, Arg, _} <- Named],
|
|
FArgs = [type_to_fcode(Env, Sub, Arg) || Arg <- Args],
|
|
{function, FNamed ++ FArgs, type_to_fcode(Env, Sub, Res)};
|
|
type_to_fcode(_Env, _Sub, Type) ->
|
|
error({todo, Type}).
|
|
|
|
-spec args_to_fcode(env(), [aeso_syntax:arg()]) -> [{var_name(), ftype()}].
|
|
args_to_fcode(Env, Args) ->
|
|
[ {Name, type_to_fcode(Env, Type)} || {arg, _, {id, _, Name}, Type} <- Args ].
|
|
|
|
-spec expr_to_fcode(env(), aeso_syntax:expr()) -> fexpr().
|
|
expr_to_fcode(Env, {typed, _, Expr, Type}) ->
|
|
expr_to_fcode(Env, Type, Expr);
|
|
expr_to_fcode(Env, Expr) ->
|
|
expr_to_fcode(Env, no_type, Expr).
|
|
|
|
-spec expr_to_fcode(env(), aeso_syntax:type() | no_type, aeso_syntax:expr()) -> fexpr().
|
|
|
|
%% Literals
|
|
expr_to_fcode(_Env, _Type, {int, _, N}) -> {lit, {int, N}};
|
|
expr_to_fcode(_Env, _Type, {char, _, N}) -> {lit, {int, N}};
|
|
expr_to_fcode(_Env, _Type, {bool, _, B}) -> {lit, {bool, B}};
|
|
expr_to_fcode(_Env, _Type, {string, _, S}) -> {lit, {string, S}};
|
|
expr_to_fcode(_Env, _Type, {account_pubkey, _, K}) -> {lit, {account_pubkey, K}};
|
|
expr_to_fcode(_Env, _Type, {contract_pubkey, _, K}) -> {lit, {contract_pubkey, K}};
|
|
expr_to_fcode(_Env, _Type, {oracle_pubkey, _, K}) -> {lit, {oracle_pubkey, K}};
|
|
expr_to_fcode(_Env, _Type, {oracle_query_id, _, K}) -> {lit, {oracle_query_id, K}};
|
|
|
|
expr_to_fcode(_Env, _Type, {bytes, _, Bin}) -> {lit, {string, Bin}};
|
|
|
|
%% Variables
|
|
expr_to_fcode(Env, _Type, {id, _, X}) -> resolve_var(Env, [X]);
|
|
expr_to_fcode(Env, _Type, {qid, _, X}) -> resolve_var(Env, X);
|
|
|
|
%% Constructors
|
|
expr_to_fcode(Env, Type, {C, _, _} = Con) when C == con; C == qcon ->
|
|
expr_to_fcode(Env, Type, {app, [], {typed, [], Con, Type}, []});
|
|
expr_to_fcode(Env, _Type, {app, _, {typed, _, {C, _, _} = Con, _}, Args}) when C == con; C == qcon ->
|
|
#con_tag{ tag = I, arities = Arities } = lookup_con(Env, Con),
|
|
Arity = lists:nth(I + 1, Arities),
|
|
case length(Args) == Arity of
|
|
true -> {con, Arities, I, [expr_to_fcode(Env, Arg) || Arg <- Args]};
|
|
false -> fcode_error({constructor_arity_mismatch, Con, length(Args), Arity})
|
|
end;
|
|
|
|
%% Tuples
|
|
expr_to_fcode(Env, _Type, {tuple, _, Es}) ->
|
|
{tuple, [expr_to_fcode(Env, E) || E <- Es]};
|
|
|
|
%% Records
|
|
expr_to_fcode(Env, Type, {proj, _Ann, Rec = {typed, _, _, RecType}, {id, _, X}}) ->
|
|
case RecType of
|
|
{con, _, _} ->
|
|
{fun_t, _, Named, Args, _} = Type,
|
|
Arity = length(Named) + length(Args),
|
|
{remote_u, expr_to_fcode(Env, Rec), {entrypoint, list_to_binary(X)}, Arity};
|
|
{record_t, _} ->
|
|
{proj, expr_to_fcode(Env, Rec), field_index(Rec, X)}
|
|
end;
|
|
|
|
expr_to_fcode(Env, {record_t, FieldTypes}, {record, _Ann, Fields}) ->
|
|
FVal = fun(F) ->
|
|
%% All fields are present and no updates
|
|
{set, E} = field_value(F, Fields),
|
|
expr_to_fcode(Env, E)
|
|
end,
|
|
{tuple, lists:map(FVal, FieldTypes)};
|
|
|
|
expr_to_fcode(Env, {record_t, FieldTypes}, {record, _Ann, Rec, Fields}) ->
|
|
X = fresh_name(),
|
|
Proj = fun(I) -> {proj, {var, X}, I - 1} end,
|
|
Comp = fun({I, false}) -> Proj(I);
|
|
({_, {set, E}}) -> expr_to_fcode(Env, E);
|
|
({I, {upd, Z, E}}) -> {'let', Z, Proj(I), expr_to_fcode(bind_var(Env, Z), E)}
|
|
end,
|
|
Set = fun({_, false}, R) -> R;
|
|
({I, {set, E}}, R) -> {set_proj, R, I - 1, expr_to_fcode(Env, E)};
|
|
({I, {upd, Z, E}}, R) -> {set_proj, R, I - 1,
|
|
{'let', Z, Proj(I), expr_to_fcode(bind_var(Env, Z), E)}}
|
|
end,
|
|
Expand = length(Fields) == length(FieldTypes),
|
|
Updates = [ {I, field_value(FT, Fields)} || {I, FT} <- indexed(FieldTypes) ],
|
|
Body = case Expand of
|
|
true -> {tuple, lists:map(Comp, Updates)};
|
|
false -> lists:foldr(Set, {var, X}, Updates)
|
|
end,
|
|
{'let', X, expr_to_fcode(Env, Rec), Body};
|
|
|
|
%% Lists
|
|
expr_to_fcode(Env, _Type, {list, _, Es}) ->
|
|
lists:foldr(fun(E, L) -> {op, '::', [expr_to_fcode(Env, E), L]} end,
|
|
nil, Es);
|
|
|
|
%% Conditionals
|
|
expr_to_fcode(Env, _Type, {'if', _, Cond, Then, Else}) ->
|
|
Switch = fun(X) ->
|
|
{switch, {split, boolean, X,
|
|
[{'case', {bool, false}, {nosplit, expr_to_fcode(Env, Else)}},
|
|
{'case', {bool, true}, {nosplit, expr_to_fcode(Env, Then)}}]}}
|
|
end,
|
|
case Cond of
|
|
{var, X} -> Switch(X);
|
|
_ ->
|
|
X = fresh_name(),
|
|
{'let', X, expr_to_fcode(Env, Cond), Switch(X)}
|
|
end;
|
|
|
|
%% Switch
|
|
expr_to_fcode(Env, _, {switch, _, Expr = {typed, _, E, Type}, Alts}) ->
|
|
Switch = fun(X) ->
|
|
{switch, alts_to_fcode(Env, type_to_fcode(Env, Type), X, Alts)}
|
|
end,
|
|
case E of
|
|
{id, _, X} -> Switch(X);
|
|
_ ->
|
|
X = fresh_name(),
|
|
{'let', X, expr_to_fcode(Env, Expr),
|
|
Switch(X)}
|
|
end;
|
|
|
|
%% Blocks
|
|
expr_to_fcode(Env, _Type, {block, _, Stmts}) ->
|
|
stmts_to_fcode(Env, Stmts);
|
|
|
|
%% Binary operator
|
|
expr_to_fcode(Env, _Type, Expr = {app, _, {Op, _}, [_, _]}) when Op == '&&'; Op == '||' ->
|
|
Tree = expr_to_decision_tree(Env, Expr),
|
|
decision_tree_to_fcode(Tree);
|
|
expr_to_fcode(Env, _Type, {app, _Ann, {Op, _}, [A, B]}) when is_atom(Op) ->
|
|
{op, Op, [expr_to_fcode(Env, A), expr_to_fcode(Env, B)]};
|
|
expr_to_fcode(Env, _Type, {app, _Ann, {Op, _}, [A]}) when is_atom(Op) ->
|
|
case Op of
|
|
'-' -> {op, '-', [{lit, {int, 0}}, expr_to_fcode(Env, A)]};
|
|
'!' -> {op, '!', [expr_to_fcode(Env, A)]}
|
|
end;
|
|
|
|
%% Function calls
|
|
expr_to_fcode(Env, _Type, {app, _Ann, Fun = {typed, _, _, {fun_t, _, NamedArgsT, _, _}}, Args}) ->
|
|
Args1 = get_named_args(NamedArgsT, Args),
|
|
FArgs = [expr_to_fcode(Env, Arg) || Arg <- Args1],
|
|
case expr_to_fcode(Env, Fun) of
|
|
{builtin_u, B, _Ar} -> builtin_to_fcode(B, FArgs);
|
|
{def_u, F, _Ar} -> {def, F, FArgs};
|
|
{remote_u, Ct, RFun, _Ar} -> {remote, Ct, RFun, FArgs};
|
|
FFun ->
|
|
%% FFun is a closure, with first component the function name and
|
|
%% second component the environment
|
|
Call = fun(X) -> {funcall, {proj, {var, X}, 0}, [{proj, {var, X}, 1} | FArgs]} end,
|
|
case FFun of
|
|
{var, X} -> Call(X);
|
|
_ -> X = fresh_name(),
|
|
{'let', X, FFun, Call(X)}
|
|
end
|
|
end;
|
|
|
|
%% Maps
|
|
expr_to_fcode(_Env, _Type, {map, _, []}) ->
|
|
{builtin, map_empty, []};
|
|
expr_to_fcode(Env, Type, {map, Ann, KVs}) ->
|
|
%% Cheaper to do incremental map_update than building the list and doing
|
|
%% map_from_list (I think).
|
|
Fields = [{field, Ann, [{map_get, Ann, K}], V} || {K, V} <- KVs],
|
|
expr_to_fcode(Env, Type, {map, Ann, {map, Ann, []}, Fields});
|
|
expr_to_fcode(Env, _Type, {map, _, Map, KVs}) ->
|
|
X = fresh_name(),
|
|
Map1 = {var, X},
|
|
{'let', X, expr_to_fcode(Env, Map),
|
|
lists:foldr(fun(Fld, M) ->
|
|
case Fld of
|
|
{field, _, [{map_get, _, K}], V} ->
|
|
{op, map_set, [M, expr_to_fcode(Env, K), expr_to_fcode(Env, V)]};
|
|
{field_upd, _, [{map_get, _, K}], {typed, _, {lam, _, [{arg, _, {id, _, Z}, _}], V}, _}} ->
|
|
Y = fresh_name(),
|
|
{'let', Y, expr_to_fcode(Env, K),
|
|
{'let', Z, {op, map_get, [Map1, {var, Y}]},
|
|
{op, map_set, [M, {var, Y}, expr_to_fcode(bind_var(Env, Z), V)]}}}
|
|
end end, Map1, KVs)};
|
|
expr_to_fcode(Env, _Type, {map_get, _, Map, Key}) ->
|
|
{op, map_get, [expr_to_fcode(Env, Map), expr_to_fcode(Env, Key)]};
|
|
expr_to_fcode(Env, _Type, {map_get, _, Map, Key, Def}) ->
|
|
{op, map_get_d, [expr_to_fcode(Env, Map), expr_to_fcode(Env, Key), expr_to_fcode(Env, Def)]};
|
|
|
|
expr_to_fcode(Env, _Type, {lam, _, Args, Body}) ->
|
|
GetArg = fun({arg, _, {id, _, X}, _}) -> X end,
|
|
Xs = lists:map(GetArg, Args),
|
|
{lam, Xs, expr_to_fcode(bind_vars(Env, Xs), Body)};
|
|
|
|
expr_to_fcode(_Env, Type, Expr) ->
|
|
error({todo, {Expr, ':', Type}}).
|
|
|
|
%% -- Pattern matching --
|
|
|
|
-spec alts_to_fcode(env(), ftype(), var_name(), [aeso_syntax:alt()]) -> fsplit().
|
|
alts_to_fcode(Env, Type, X, Alts) ->
|
|
FAlts = [alt_to_fcode(Env, Alt) || Alt <- Alts],
|
|
split_tree(Env, [{X, Type}], FAlts).
|
|
|
|
%% Intermediate format before case trees (fcase() and fsplit()).
|
|
-type falt() :: {'case', [fpat()], fexpr()}.
|
|
-type fpat() :: {var, var_name()}
|
|
| {bool, false | true}
|
|
| {int, integer()}
|
|
| {string, binary()}
|
|
| nil | {'::', fpat(), fpat()}
|
|
| {tuple, [fpat()]}
|
|
| {con, arities(), tag(), [fpat()]}.
|
|
|
|
%% %% Invariant: the number of variables matches the number of patterns in each falt.
|
|
-spec split_tree(env(), [{var_name(), ftype()}], [falt()]) -> fsplit().
|
|
split_tree(_Env, _Vars, []) ->
|
|
error(non_exhaustive_patterns); %% TODO: nice error
|
|
split_tree(Env, Vars, Alts = [{'case', Pats, Body} | _]) ->
|
|
case next_split(Pats) of
|
|
false ->
|
|
Xs = [ X || {X, _} <- Vars ],
|
|
Ys = [ Y || {var, Y} <- Pats ],
|
|
Ren = [ {Y, X} || {Y, X} <- lists:zip(Ys, Xs), X /= Y, Y /= "_" ],
|
|
%% TODO: Unreachable clauses error
|
|
{nosplit, rename(Ren, Body)};
|
|
I when is_integer(I) ->
|
|
{Vars0, [{X, Type} | Vars1]} = lists:split(I - 1, Vars),
|
|
SAlts = merge_alts(I, X, [ split_alt(I, A) || A <- Alts ]),
|
|
Cases = [ {'case', SPat, split_tree(Env, Vars0 ++ split_vars(SPat, Type) ++ Vars1, FAlts)}
|
|
|| {SPat, FAlts} <- SAlts ],
|
|
{split, Type, X, Cases}
|
|
end.
|
|
|
|
-spec merge_alts(integer(), var_name(), [{fsplit_pat(), falt()}]) -> [{fsplit_pat(), [falt()]}].
|
|
merge_alts(I, X, Alts) ->
|
|
merge_alts(I, X, Alts, []).
|
|
|
|
merge_alts(I, X, Alts, Alts1) ->
|
|
lists:foldr(fun(A, As) -> merge_alt(I, X, A, As) end,
|
|
Alts1, Alts).
|
|
|
|
-spec merge_alt(integer(), var_name(), {fsplit_pat(), falt()}, Alts) -> Alts
|
|
when Alts :: [{fsplit_pat(), [falt()]}].
|
|
merge_alt(_, _, {P, A}, []) -> [{P, [A]}];
|
|
merge_alt(I, X, {P, A}, [{Q, As} | Rest]) ->
|
|
Match = fun({var, _}, {var, _}) -> match;
|
|
({tuple, _}, {tuple, _}) -> match;
|
|
({bool, B}, {bool, B}) -> match;
|
|
({int, N}, {int, N}) -> match;
|
|
({string, S}, {string, S}) -> match;
|
|
(nil, nil) -> match;
|
|
({'::', _, _}, {'::', _, _}) -> match;
|
|
({con, _, C, _}, {con, _, C, _}) -> match;
|
|
({con, _, _, _}, {con, _, _, _}) -> mismatch;
|
|
({var, _}, _) -> expand;
|
|
(_, {var, _}) -> insert;
|
|
(_, _) -> mismatch
|
|
end,
|
|
case Match(P, Q) of
|
|
match -> [{Q, [A | As]} | Rest];
|
|
mismatch -> [{Q, As} | merge_alt(I, X, {P, A}, Rest)];
|
|
expand ->
|
|
{Before, After} = expand(I, X, P, Q, A),
|
|
merge_alts(I, X, Before, [{Q, As} | merge_alts(I, X, After, Rest)]);
|
|
insert -> [{P, [A]}, {Q, As} | Rest]
|
|
end.
|
|
|
|
expand(I, X, P, Q, Case = {'case', Ps, E}) ->
|
|
{Ps0, [{var, Y} | Ps1]} = lists:split(I - 1, Ps),
|
|
{Ps0r, Ren1} = rename_fpats([{Y, X} || Y /= X], Ps0),
|
|
{Ps1r, Ren2} = rename_fpats(Ren1, Ps1),
|
|
E1 = rename(Ren2, E),
|
|
Splice = fun(N) -> Ps0r ++ lists:duplicate(N, {var, "_"}) ++ Ps1r end,
|
|
Type = fun({tuple, Xs}) -> {tuple, length(Xs)};
|
|
({bool, _}) -> bool;
|
|
({int, _}) -> int;
|
|
({string, _}) -> string;
|
|
(nil) -> list;
|
|
({'::', _, _}) -> list;
|
|
({con, As, _, _}) -> {variant, As}
|
|
end,
|
|
MkCase = fun(Pat, Vars) -> {Pat, {'case', Splice(Vars), E1}} end,
|
|
case Type(Q) of
|
|
{tuple, N} -> {[MkCase(Q, N)], []};
|
|
bool -> {[MkCase({bool, B}, 0) || B <- [false, true]], []};
|
|
int -> {[MkCase(Q, 0)], [{P, Case}]};
|
|
string -> {[MkCase(Q, 0)], [{P, Case}]};
|
|
list -> {[MkCase(nil, 0), MkCase({'::', fresh_name(), fresh_name()}, 2)], []};
|
|
{variant, As} -> {[MkCase({con, As, C - 1, [fresh_name() || _ <- lists:seq(1, Ar)]}, Ar)
|
|
|| {C, Ar} <- indexed(As)], []}
|
|
end.
|
|
|
|
-spec split_alt(integer(), falt()) -> {fsplit_pat(), falt()}.
|
|
split_alt(I, {'case', Pats, Body}) ->
|
|
{Pats0, [Pat | Pats1]} = lists:split(I - 1, Pats),
|
|
{SPat, InnerPats} = split_pat(Pat),
|
|
{SPat, {'case', Pats0 ++ InnerPats ++ Pats1, Body}}.
|
|
|
|
-spec split_pat(fpat()) -> {fsplit_pat(), [fpat()]}.
|
|
split_pat(P = {var, _}) -> {{var, fresh_name()}, [P]};
|
|
split_pat({bool, B}) -> {{bool, B}, []};
|
|
split_pat({int, N}) -> {{int, N}, []};
|
|
split_pat({string, N}) -> {{string, N}, []};
|
|
split_pat(nil) -> {nil, []};
|
|
split_pat({'::', P, Q}) -> {{'::', fresh_name(), fresh_name()}, [P, Q]};
|
|
split_pat({con, As, I, Pats}) ->
|
|
Xs = [fresh_name() || _ <- Pats],
|
|
{{con, As, I, Xs}, Pats};
|
|
split_pat({tuple, Pats}) ->
|
|
Xs = [fresh_name() || _ <- Pats],
|
|
{{tuple, Xs}, Pats}.
|
|
|
|
-spec split_vars(fsplit_pat(), ftype()) -> [{var_name(), ftype()}].
|
|
split_vars({bool, _}, boolean) -> [];
|
|
split_vars({int, _}, integer) -> [];
|
|
split_vars({string, _}, string) -> [];
|
|
split_vars(nil, {list, _}) -> [];
|
|
split_vars({'::', X, Xs}, {list, T}) -> [{X, T}, {Xs, {list, T}}];
|
|
split_vars({con, _, I, Xs}, {variant, Cons}) ->
|
|
lists:zip(Xs, lists:nth(I + 1, Cons));
|
|
split_vars({tuple, Xs}, {tuple, Ts}) ->
|
|
lists:zip(Xs, Ts);
|
|
split_vars({var, X}, T) -> [{X, T}].
|
|
|
|
-spec next_split([fpat()]) -> integer() | false.
|
|
next_split(Pats) ->
|
|
IsVar = fun({var, _}) -> true; (_) -> false end,
|
|
case [ I || {I, P} <- indexed(Pats), not IsVar(P) ] of
|
|
[] -> false;
|
|
[I | _] -> I
|
|
end.
|
|
|
|
-spec alt_to_fcode(env(), aeso_syntax:alt()) -> falt().
|
|
alt_to_fcode(Env, {'case', _, Pat, Expr}) ->
|
|
FPat = pat_to_fcode(Env, Pat),
|
|
FExpr = expr_to_fcode(bind_vars(Env, pat_vars(FPat)), Expr),
|
|
{'case', [FPat], FExpr}.
|
|
|
|
-spec pat_to_fcode(env(), aeso_syntax:pat()) -> fpat().
|
|
pat_to_fcode(Env, {typed, _, Pat, Type}) ->
|
|
pat_to_fcode(Env, Type, Pat);
|
|
pat_to_fcode(Env, Pat) ->
|
|
pat_to_fcode(Env, no_type, Pat).
|
|
|
|
-spec pat_to_fcode(env(), aeso_syntax:type() | no_type, aeso_syntax:pat()) -> fpat().
|
|
pat_to_fcode(_Env, _Type, {id, _, X}) -> {var, X};
|
|
pat_to_fcode(Env, _Type, {C, _, _} = Con) when C == con; C == qcon ->
|
|
#con_tag{tag = I, arities = As} = lookup_con(Env, Con),
|
|
{con, As, I, []};
|
|
pat_to_fcode(Env, _Type, {app, _, {typed, _, {C, _, _} = Con, _}, Pats}) when C == con; C == qcon ->
|
|
#con_tag{tag = I, arities = As} = lookup_con(Env, Con),
|
|
{con, As, I, [pat_to_fcode(Env, Pat) || Pat <- Pats]};
|
|
pat_to_fcode(Env, _Type, {tuple, _, Pats}) ->
|
|
{tuple, [ pat_to_fcode(Env, Pat) || Pat <- Pats ]};
|
|
pat_to_fcode(_Env, _Type, {bool, _, B}) -> {bool, B};
|
|
pat_to_fcode(_Env, _Type, {int, _, N}) -> {int, N};
|
|
pat_to_fcode(_Env, _Type, {char, _, N}) -> {int, N};
|
|
pat_to_fcode(_Env, _Type, {string, _, N}) -> {string, N};
|
|
pat_to_fcode(Env, _Type, {list, _, Ps}) ->
|
|
lists:foldr(fun(P, Qs) ->
|
|
{'::', pat_to_fcode(Env, P), Qs}
|
|
end, nil, Ps);
|
|
pat_to_fcode(Env, _Type, {app, _, {'::', _}, [P, Q]}) ->
|
|
{'::', pat_to_fcode(Env, P), pat_to_fcode(Env, Q)};
|
|
pat_to_fcode(Env, {record_t, Fields}, {record, _, FieldPats}) ->
|
|
FieldPat = fun(F) ->
|
|
case field_value(F, FieldPats) of
|
|
false -> {id, [], "_"};
|
|
{set, Pat} -> Pat
|
|
%% {upd, _, _} is impossible in patterns
|
|
end end,
|
|
{tuple, [pat_to_fcode(Env, FieldPat(Field))
|
|
|| Field <- Fields]};
|
|
|
|
pat_to_fcode(_Env, Type, Pat) ->
|
|
error({todo, Pat, ':', Type}).
|
|
|
|
%% -- Decision trees for boolean operators --
|
|
|
|
decision_op('&&', {atom, A}, B) -> {'if', A, B, false};
|
|
decision_op('&&', false, _) -> false;
|
|
decision_op('&&', true, B) -> B;
|
|
decision_op('||', {atom, A}, B) -> {'if', A, true, B};
|
|
decision_op('||', false, B) -> B;
|
|
decision_op('||', true, _) -> true;
|
|
decision_op(Op, {'if', A, Then, Else}, B) ->
|
|
{'if', A, decision_op(Op, Then, B), decision_op(Op, Else, B)}.
|
|
|
|
expr_to_decision_tree(Env, {app, _Ann, {Op, _}, [A, B]}) when Op == '&&'; Op == '||' ->
|
|
decision_op(Op, expr_to_decision_tree(Env, A), expr_to_decision_tree(Env, B));
|
|
expr_to_decision_tree(Env, {typed, _, Expr, _}) -> expr_to_decision_tree(Env, Expr);
|
|
expr_to_decision_tree(Env, Expr) ->
|
|
{atom, expr_to_fcode(Env, Expr)}.
|
|
|
|
decision_tree_to_fcode(false) -> {lit, {bool, false}};
|
|
decision_tree_to_fcode(true) -> {lit, {bool, true}};
|
|
decision_tree_to_fcode({atom, B}) -> B;
|
|
decision_tree_to_fcode({'if', A, Then, Else}) ->
|
|
X = fresh_name(),
|
|
{'let', X, A,
|
|
{switch, {split, boolean, X, [{'case', {bool, false}, {nosplit, decision_tree_to_fcode(Else)}},
|
|
{'case', {bool, true}, {nosplit, decision_tree_to_fcode(Then)}}]}}}.
|
|
|
|
%% -- Statements --
|
|
|
|
-spec stmts_to_fcode(env(), [aeso_syntax:stmt()]) -> fexpr().
|
|
stmts_to_fcode(Env, [{letval, _, {typed, _, {id, _, X}, _}, _, Expr} | Stmts]) ->
|
|
{'let', X, expr_to_fcode(Env, Expr), stmts_to_fcode(bind_var(Env, X), Stmts)};
|
|
stmts_to_fcode(Env, [{letfun, Ann, {id, _, X}, Args, _Type, Expr} | Stmts]) ->
|
|
{'let', X, expr_to_fcode(Env, {lam, Ann, Args, Expr}),
|
|
stmts_to_fcode(bind_var(Env, X), Stmts)};
|
|
stmts_to_fcode(Env, [Expr]) ->
|
|
expr_to_fcode(Env, Expr);
|
|
stmts_to_fcode(Env, [Expr | Stmts]) ->
|
|
{'let', "_", expr_to_fcode(Env, Expr), stmts_to_fcode(Env, Stmts)}.
|
|
|
|
%% -- Builtins --
|
|
|
|
op_builtins() ->
|
|
[map_from_list, map_to_list, map_delete, map_member, map_size,
|
|
string_length, string_concat, string_sha3, string_sha256, string_blake2b,
|
|
bits_set, bits_clear, bits_test, bits_sum, bits_intersection, bits_union,
|
|
bits_difference, int_to_str, address_to_str].
|
|
|
|
builtin_to_fcode(map_lookup, [Key, Map]) ->
|
|
{op, map_get, [Map, Key]};
|
|
builtin_to_fcode(map_lookup_default, [Key, Map, Def]) ->
|
|
{op, map_get_d, [Map, Key, Def]};
|
|
builtin_to_fcode(Builtin, Args) ->
|
|
case lists:member(Builtin, op_builtins()) of
|
|
true -> {op, Builtin, Args};
|
|
false -> {builtin, Builtin, Args}
|
|
end.
|
|
|
|
%% -- Lambda lifting ---------------------------------------------------------
|
|
%% The expr_to_fcode compiler lambda expressions to {lam, Xs, Body}, but in
|
|
%% FATE we can only call top-level functions, so we need to lift the lambda to
|
|
%% the top-level and replace it with a closure.
|
|
|
|
-spec lambda_lift(fcode()) -> fcode().
|
|
lambda_lift(FCode = #{ functions := Funs }) ->
|
|
init_fresh_names(),
|
|
init_lambda_funs(),
|
|
Funs1 = maps:map(fun lambda_lift_fun/2, Funs),
|
|
NewFuns = get_lambda_funs(),
|
|
clear_fresh_names(),
|
|
FCode#{ functions := maps:merge(Funs1, NewFuns) }.
|
|
|
|
-define(lambda_key, '%lambdalifted').
|
|
init_lambda_funs() -> put(?lambda_key, #{}).
|
|
get_lambda_funs() -> erase(?lambda_key).
|
|
|
|
add_lambda_fun(Def) ->
|
|
Name = fresh_fun(),
|
|
Funs = get(?lambda_key),
|
|
put(?lambda_key, Funs#{ Name => Def }),
|
|
Name.
|
|
|
|
lambda_lift_fun(_, Def = #{ body := Body }) ->
|
|
Def#{ body := lambda_lift_expr(Body) }.
|
|
|
|
lifted_fun([Z], Xs, Body) ->
|
|
#{ attrs => [private],
|
|
args => [{Z, any} | [{X, any} || X <- Xs]],
|
|
return => any,
|
|
body => Body };
|
|
lifted_fun(FVs, Xs, Body) ->
|
|
Z = "%env",
|
|
Proj = fun({I, Y}, E) -> {'let', Y, {proj, {var, Z}, I - 1}, E} end,
|
|
#{ attrs => [private],
|
|
args => [{Z, any} | [{X, any} || X <- Xs]],
|
|
return => any,
|
|
body => lists:foldr(Proj, Body, indexed(FVs))
|
|
}.
|
|
|
|
make_closure(FVs, Xs, Body) ->
|
|
Fun = add_lambda_fun(lifted_fun(FVs, Xs, Body)),
|
|
Tup = fun([Y]) -> Y; (Ys) -> {tuple, Ys} end,
|
|
{closure, Fun, Tup([{var, Y} || Y <- FVs])}.
|
|
|
|
lambda_lift_expr({lam, Xs, Body}) ->
|
|
FVs = free_vars({lam, Xs, Body}),
|
|
make_closure(FVs, Xs, lambda_lift_expr(Body));
|
|
lambda_lift_expr({Tag, F, Ar}) when Tag == def_u; Tag == builtin_u ->
|
|
Xs = [ lists:concat(["arg", I]) || I <- lists:seq(1, Ar) ],
|
|
Args = [{var, X} || X <- Xs],
|
|
Body = case Tag of
|
|
builtin_u -> builtin_to_fcode(F, Args);
|
|
def_u -> {def, F, Args}
|
|
end,
|
|
make_closure([], Xs, Body);
|
|
lambda_lift_expr({remote_u, Ct, F, Ar}) ->
|
|
FVs = free_vars(Ct),
|
|
Ct1 = lambda_lift_expr(Ct),
|
|
Xs = [ lists:concat(["arg", I]) || I <- lists:seq(1, Ar) ],
|
|
Args = [{var, X} || X <- Xs],
|
|
make_closure(FVs, Xs, {remote, Ct1, F, Args});
|
|
lambda_lift_expr(Expr) ->
|
|
case Expr of
|
|
{lit, _} -> Expr;
|
|
nil -> Expr;
|
|
{var, _} -> Expr;
|
|
{closure, _, _} -> Expr;
|
|
{def, D, As} -> {def, D, lambda_lift_exprs(As)};
|
|
{builtin, B, As} -> {builtin, B, lambda_lift_exprs(As)};
|
|
{remote, Ct, F, As} -> {remote, lambda_lift_expr(Ct), F, lambda_lift_exprs(As)};
|
|
{con, Ar, C, As} -> {con, Ar, C, lambda_lift_exprs(As)};
|
|
{tuple, As} -> {tuple, lambda_lift_exprs(As)};
|
|
{proj, A, I} -> {proj, lambda_lift_expr(A), I};
|
|
{set_proj, A, I, B} -> {set_proj, lambda_lift_expr(A), I, lambda_lift_expr(B)};
|
|
{op, Op, As} -> {op, Op, lambda_lift_exprs(As)};
|
|
{'let', X, A, B} -> {'let', X, lambda_lift_expr(A), lambda_lift_expr(B)};
|
|
{funcall, A, Bs} -> {funcall, lambda_lift_expr(A), lambda_lift_exprs(Bs)};
|
|
{switch, S} -> {switch, lambda_lift_expr(S)};
|
|
{split, Type, X, Alts} -> {split, Type, X, lambda_lift_exprs(Alts)};
|
|
{nosplit, A} -> {nosplit, lambda_lift_expr(A)};
|
|
{'case', P, S} -> {'case', P, lambda_lift_expr(S)}
|
|
end.
|
|
|
|
lambda_lift_exprs(As) -> [lambda_lift_expr(A) || A <- As].
|
|
|
|
%% -- Optimisations ----------------------------------------------------------
|
|
|
|
%% - Deadcode elimination
|
|
%% - Unused variable analysis (replace by _)
|
|
%% - Case specialization
|
|
%% - Constant propagation
|
|
%% - Inlining
|
|
|
|
-spec optimize_fcode(fcode()) -> fcode().
|
|
optimize_fcode(Code = #{ functions := Funs }) ->
|
|
Code#{ functions := maps:map(fun(Name, Def) -> optimize_fun(Code, Name, Def) end, Funs) }.
|
|
|
|
-spec optimize_fun(fcode(), fun_name(), fun_def()) -> fun_def().
|
|
optimize_fun(_Fcode, _Fun, Def = #{ body := _Body }) ->
|
|
%% io:format("Optimizing ~p =\n~s\n", [_Fun, prettypr:format(pp_fexpr(_Body))]),
|
|
Def.
|
|
|
|
%% -- Helper functions -------------------------------------------------------
|
|
|
|
%% -- Types --
|
|
|
|
-spec lookup_type(env(), aeso_syntax:id() | aeso_syntax:qid() | sophia_name(), [ftype()]) -> ftype().
|
|
lookup_type(Env, {id, _, Name}, Args) ->
|
|
lookup_type(Env, [Name], Args);
|
|
lookup_type(Env, {qid, _, Name}, Args) ->
|
|
lookup_type(Env, Name, Args);
|
|
lookup_type(Env, Name, Args) ->
|
|
case lookup_type(Env, Name, Args, not_found) of
|
|
not_found -> error({unknown_type, Name});
|
|
Type -> Type
|
|
end.
|
|
|
|
-spec lookup_type(env(), sophia_name(), [ftype()], ftype() | A) -> ftype() | A.
|
|
lookup_type(#{ type_env := TypeEnv }, Name, Args, Default) ->
|
|
case maps:get(Name, TypeEnv, false) of
|
|
false -> Default;
|
|
Fun -> Fun(Args)
|
|
end.
|
|
|
|
-spec bind_type(env(), sophia_name(), type_def()) -> env().
|
|
bind_type(Env = #{type_env := TEnv}, Q, FDef) ->
|
|
Env#{ type_env := TEnv#{ Q => FDef } }.
|
|
|
|
-spec bind_constructors(env(), con_env()) -> env().
|
|
bind_constructors(Env = #{ con_env := ConEnv }, NewCons) ->
|
|
Env#{ con_env := maps:merge(ConEnv, NewCons) }.
|
|
|
|
%% -- Names --
|
|
|
|
-spec add_fun_env(env(), [aeso_syntax:decl()]) -> env().
|
|
add_fun_env(Env = #{ context := {abstract_contract, _} }, _) -> Env; %% no functions from abstract contracts
|
|
add_fun_env(Env = #{ fun_env := FunEnv }, Decls) ->
|
|
Entry = fun({letfun, Ann, {id, _, Name}, Args, _, _}) ->
|
|
[{qname(Env, Name), {make_fun_name(Env, Ann, Name), length(Args)}}];
|
|
(_) -> [] end,
|
|
FunEnv1 = maps:from_list(lists:flatmap(Entry, Decls)),
|
|
Env#{ fun_env := maps:merge(FunEnv, FunEnv1) }.
|
|
|
|
make_fun_name(#{ context := Context }, Ann, Name) ->
|
|
Private = proplists:get_value(private, Ann, false) orelse
|
|
proplists:get_value(internal, Ann, false),
|
|
case Context of
|
|
{main_contract, Main} ->
|
|
if Private -> {local_fun, [Main, Name]};
|
|
Name == "init" -> init;
|
|
true -> {entrypoint, list_to_binary(Name)}
|
|
end;
|
|
{namespace, Lib} ->
|
|
{local_fun, [Lib, Name]}
|
|
end.
|
|
|
|
-spec current_namespace(env()) -> string().
|
|
current_namespace(#{ context := Cxt }) ->
|
|
case Cxt of
|
|
{abstract_contract, Con} -> Con;
|
|
{main_contract, Con} -> Con;
|
|
{namespace, NS} -> NS
|
|
end.
|
|
|
|
-spec qname(env(), string()) -> sophia_name().
|
|
qname(Env, Name) ->
|
|
[current_namespace(Env), Name].
|
|
|
|
-spec lookup_fun(env(), sophia_name()) -> fun_name().
|
|
lookup_fun(#{ fun_env := FunEnv }, Name) ->
|
|
case maps:get(Name, FunEnv, false) of
|
|
false -> error({unbound_name, Name});
|
|
{FName, _} -> FName
|
|
end.
|
|
|
|
-spec lookup_con(env(), aeso_syntax:con() | aeso_syntax:qcon() | sophia_name()) -> con_tag().
|
|
lookup_con(Env, {con, _, Con}) -> lookup_con(Env, [Con]);
|
|
lookup_con(Env, {qcon, _, Con}) -> lookup_con(Env, Con);
|
|
lookup_con(#{ con_env := ConEnv }, Con) ->
|
|
case maps:get(Con, ConEnv, false) of
|
|
false -> error({unbound_constructor, Con});
|
|
Tag -> Tag
|
|
end.
|
|
|
|
bind_vars(Env, Xs) ->
|
|
lists:foldl(fun(X, E) -> bind_var(E, X) end, Env, Xs).
|
|
|
|
bind_var(Env = #{ vars := Vars }, X) -> Env#{ vars := [X | Vars] }.
|
|
|
|
resolve_var(#{ vars := Vars } = Env, [X]) ->
|
|
case lists:member(X, Vars) of
|
|
true -> {var, X};
|
|
false -> resolve_fun(Env, [X])
|
|
end;
|
|
resolve_var(Env, Q) -> resolve_fun(Env, Q).
|
|
|
|
resolve_fun(#{ fun_env := Funs, builtins := Builtin }, Q) ->
|
|
case {maps:get(Q, Funs, not_found), maps:get(Q, Builtin, not_found)} of
|
|
{not_found, not_found} -> fcode_error({unbound_variable, Q});
|
|
{_, {B, none}} -> {builtin, B, []};
|
|
{_, {B, Ar}} -> {builtin_u, B, Ar};
|
|
{{Fun, Ar}, _} -> {def_u, Fun, Ar}
|
|
end.
|
|
|
|
init_fresh_names() ->
|
|
put('%fresh', 0).
|
|
|
|
clear_fresh_names() ->
|
|
erase('%fresh').
|
|
|
|
-spec fresh_name() -> var_name().
|
|
fresh_name() -> fresh_name("%").
|
|
|
|
-spec fresh_fun() -> fun_name().
|
|
fresh_fun() -> {local_fun, [fresh_name("^")]}.
|
|
|
|
-spec fresh_name(string()) -> var_name().
|
|
fresh_name(Prefix) ->
|
|
N = get('%fresh'),
|
|
put('%fresh', N + 1),
|
|
lists:concat([Prefix, N]).
|
|
|
|
-spec pat_vars(fpat()) -> [var_name()].
|
|
pat_vars({var, X}) -> [X || X /= "_"];
|
|
pat_vars({bool, _}) -> [];
|
|
pat_vars({int, _}) -> [];
|
|
pat_vars({string, _}) -> [];
|
|
pat_vars(nil) -> [];
|
|
pat_vars({'::', P, Q}) -> pat_vars(P) ++ pat_vars(Q);
|
|
pat_vars({tuple, Ps}) -> pat_vars(Ps);
|
|
pat_vars({con, _, _, Ps}) -> pat_vars(Ps);
|
|
pat_vars(Ps) when is_list(Ps) -> [X || P <- Ps, X <- pat_vars(P)].
|
|
|
|
free_vars(Xs) when is_list(Xs) ->
|
|
lists:umerge([ free_vars(X) || X <- Xs ]);
|
|
free_vars(Expr) ->
|
|
case Expr of
|
|
{var, X} -> [X];
|
|
{lit, _} -> [];
|
|
nil -> [];
|
|
{def, _, As} -> free_vars(As);
|
|
{def_u, _, _} -> [];
|
|
{remote, Ct, _, As} -> free_vars([Ct | As]);
|
|
{remote_u, Ct, _, _} -> free_vars(Ct);
|
|
{builtin, _, As} -> free_vars(As);
|
|
{builtin_u, _, _} -> [];
|
|
{con, _, _, As} -> free_vars(As);
|
|
{tuple, As} -> free_vars(As);
|
|
{proj, A, _} -> free_vars(A);
|
|
{set_proj, A, _, B} -> free_vars([A, B]);
|
|
{op, _, As} -> free_vars(As);
|
|
{'let', X, A, B} -> free_vars([A, {lam, [X], B}]);
|
|
{funcall, A, Bs} -> free_vars([A | Bs]);
|
|
{lam, Xs, B} -> free_vars(B) -- lists:sort(Xs);
|
|
{closure, _, A} -> free_vars(A);
|
|
{switch, A} -> free_vars(A);
|
|
{split, _, X, As} -> free_vars([{var, X} | As]);
|
|
{nosplit, A} -> free_vars(A);
|
|
{'case', P, A} -> free_vars(A) -- lists:sort(pat_vars(P))
|
|
end.
|
|
|
|
get_named_args(NamedArgsT, Args) ->
|
|
IsNamed = fun({named_arg, _, _, _}) -> true;
|
|
(_) -> false end,
|
|
{Named, NotNamed} = lists:partition(IsNamed, Args),
|
|
NamedArgs = [get_named_arg(NamedArg, Named) || NamedArg <- NamedArgsT],
|
|
NamedArgs ++ NotNamed.
|
|
|
|
get_named_arg({named_arg_t, _, {id, _, Name}, _, Default}, Args) ->
|
|
case [ Val || {named_arg, _, {id, _, X}, Val} <- Args, X == Name ] of
|
|
[Val] -> Val;
|
|
[] -> Default
|
|
end.
|
|
|
|
%% -- Renaming --
|
|
|
|
-spec rename([{var_name(), var_name()}], fexpr()) -> fexpr().
|
|
rename(Ren, Expr) ->
|
|
case Expr of
|
|
{lit, _} -> Expr;
|
|
nil -> nil;
|
|
{var, X} -> {var, rename_var(Ren, X)};
|
|
{def, D, Es} -> {def, D, [rename(Ren, E) || E <- Es]};
|
|
{def_u, _, _} -> Expr;
|
|
{builtin, B, Es} -> {builtin, B, [rename(Ren, E) || E <- Es]};
|
|
{builtin_u, _, _} -> Expr;
|
|
{remote, Ct, F, Es} -> {remote, rename(Ren, Ct), F, [rename(Ren, E) || E <- Es]};
|
|
{remote_u, Ct, F, Ar} -> {remote_u, rename(Ren, Ct), F, Ar};
|
|
{con, Ar, I, Es} -> {con, Ar, I, [rename(Ren, E) || E <- Es]};
|
|
{tuple, Es} -> {tuple, [rename(Ren, E) || E <- Es]};
|
|
{proj, E, I} -> {proj, rename(Ren, E), I};
|
|
{set_proj, R, I, E} -> {set_proj, rename(Ren, R), I, rename(Ren, E)};
|
|
{op, Op, Es} -> {op, Op, [rename(Ren, E) || E <- Es]};
|
|
{funcall, Fun, Es} -> {funcall, rename(Ren, Fun), [rename(Ren, E) || E <- Es]};
|
|
{closure, F, Env} -> {closure, F, rename(Ren, Env)};
|
|
{switch, Split} -> {switch, rename_split(Ren, Split)};
|
|
{lam, Xs, B} ->
|
|
{Zs, Ren1} = rename_bindings(Ren, Xs),
|
|
{lam, Zs, rename(Ren1, B)};
|
|
{'let', X, E, Body} ->
|
|
{Z, Ren1} = rename_binding(Ren, X),
|
|
{'let', Z, rename(Ren, E), rename(Ren1, Body)}
|
|
end.
|
|
|
|
rename_var(Ren, X) -> proplists:get_value(X, Ren, X).
|
|
rename_binding(Ren, X) ->
|
|
Ren1 = lists:keydelete(X, 1, Ren),
|
|
case lists:keymember(X, 2, Ren) of
|
|
false -> {X, Ren1};
|
|
true ->
|
|
Z = fresh_name(),
|
|
{Z, [{X, Z} | Ren1]}
|
|
end.
|
|
|
|
rename_bindings(Ren, []) -> {[], Ren};
|
|
rename_bindings(Ren, [X | Xs]) ->
|
|
{Z, Ren1} = rename_binding(Ren, X),
|
|
{Zs, Ren2} = rename_bindings(Ren1, Xs),
|
|
{[Z | Zs], Ren2}.
|
|
|
|
rename_fpats(Ren, []) -> {[], Ren};
|
|
rename_fpats(Ren, [P | Ps]) ->
|
|
{Q, Ren1} = rename_fpat(Ren, P),
|
|
{Qs, Ren2} = rename_fpats(Ren1, Ps),
|
|
{[Q | Qs], Ren2}.
|
|
|
|
rename_fpat(Ren, P = {bool, _}) -> {P, Ren};
|
|
rename_fpat(Ren, P = {int, _}) -> {P, Ren};
|
|
rename_fpat(Ren, P = {string, _}) -> {P, Ren};
|
|
rename_fpat(Ren, P = nil) -> {P, Ren};
|
|
rename_fpat(Ren, {'::', P, Q}) ->
|
|
{P1, Ren1} = rename_fpat(Ren, P),
|
|
{Q1, Ren2} = rename_fpat(Ren1, Q),
|
|
{{'::', P1, Q1}, Ren2};
|
|
rename_fpat(Ren, {var, X}) ->
|
|
{Z, Ren1} = rename_binding(Ren, X),
|
|
{{var, Z}, Ren1};
|
|
rename_fpat(Ren, {con, Ar, C, Ps}) ->
|
|
{Ps1, Ren1} = rename_fpats(Ren, Ps),
|
|
{{con, Ar, C, Ps1}, Ren1};
|
|
rename_fpat(Ren, {tuple, Ps}) ->
|
|
{Ps1, Ren1} = rename_fpats(Ren, Ps),
|
|
{{tuple, Ps1}, Ren1}.
|
|
|
|
rename_spat(Ren, P = {bool, _}) -> {P, Ren};
|
|
rename_spat(Ren, P = {int, _}) -> {P, Ren};
|
|
rename_spat(Ren, P = {string, _}) -> {P, Ren};
|
|
rename_spat(Ren, P = nil) -> {P, Ren};
|
|
rename_spat(Ren, {'::', X, Y}) ->
|
|
{X1, Ren1} = rename_binding(Ren, X),
|
|
{Y1, Ren2} = rename_binding(Ren1, Y),
|
|
{{'::', X1, Y1}, Ren2};
|
|
rename_spat(Ren, {var, X}) ->
|
|
{Z, Ren1} = rename_binding(Ren, X),
|
|
{{var, Z}, Ren1};
|
|
rename_spat(Ren, {con, Ar, C, Xs}) ->
|
|
{Zs, Ren1} = rename_bindings(Ren, Xs),
|
|
{{con, Ar, C, Zs}, Ren1};
|
|
rename_spat(Ren, {tuple, Xs}) ->
|
|
{Zs, Ren1} = rename_bindings(Ren, Xs),
|
|
{{tuple, Zs}, Ren1}.
|
|
|
|
rename_split(Ren, {split, Type, X, Cases}) ->
|
|
{split, Type, rename_var(Ren, X), [rename_case(Ren, C) || C <- Cases]};
|
|
rename_split(Ren, {nosplit, E}) -> {nosplit, rename(Ren, E)}.
|
|
|
|
rename_case(Ren, {'case', Pat, Split}) ->
|
|
{Pat1, Ren1} = rename_spat(Ren, Pat),
|
|
{'case', Pat1, rename_split(Ren1, Split)}.
|
|
|
|
%% -- Records --
|
|
|
|
field_index({typed, _, _, RecTy}, X) ->
|
|
field_index(RecTy, X);
|
|
field_index({record_t, Fields}, X) ->
|
|
IsX = fun({field_t, _, {id, _, Y}, _}) -> X == Y end,
|
|
[I] = [ I || {I, Field} <- indexed(Fields), IsX(Field) ],
|
|
I - 1. %% Tuples are 0-indexed
|
|
|
|
field_value({field_t, _, {id, _, X}, _}, Fields) ->
|
|
View = fun({field, _, [{proj, _, {id, _, Y}}], E}) -> {Y, {set, E}};
|
|
({field_upd, _, [{proj, _, {id, _, Y}}],
|
|
{typed, _, {lam, _, [{arg, _, {id, _, Z}, _}], E}, _}}) -> {Y, {upd, Z, E}} end,
|
|
case [Upd || {Y, Upd} <- lists:map(View, Fields), X == Y] of
|
|
[Upd] -> Upd;
|
|
[] -> false
|
|
end.
|
|
|
|
%% -- Attributes --
|
|
|
|
get_attributes(Ann) ->
|
|
[stateful || proplists:get_value(stateful, Ann, false)].
|
|
|
|
%% -- Basic utilities --
|
|
|
|
indexed(Xs) ->
|
|
lists:zip(lists:seq(1, length(Xs)), Xs).
|
|
|
|
fcode_error(Err) ->
|
|
error(Err).
|
|
|
|
%% -- Pretty printing --------------------------------------------------------
|
|
|
|
format_fcode(#{ functions := Funs }) ->
|
|
prettypr:format(pp_above(
|
|
[ pp_fun(Name, Def) || {Name, Def} <- maps:to_list(Funs) ])).
|
|
|
|
format_fexpr(E) ->
|
|
prettypr:format(pp_fexpr(E)).
|
|
|
|
pp_fun(Name, #{ args := Args, return := Return, body := Body }) ->
|
|
PPArg = fun({X, T}) -> pp_beside([pp_text(X), pp_text(" : "), pp_ftype(T)]) end,
|
|
pp_above(pp_beside([pp_text("function "), pp_fun_name(Name),
|
|
pp_parens(pp_par(pp_punctuate(pp_text(","), [PPArg(Arg) || Arg <- Args]))),
|
|
pp_text(" : "), pp_ftype(Return), pp_text(" =")]),
|
|
prettypr:nest(2, pp_fexpr(Body))).
|
|
|
|
pp_fun_name(init) -> pp_text("init");
|
|
pp_fun_name({entrypoint, E}) -> pp_text(binary_to_list(E));
|
|
pp_fun_name({local_fun, Q}) -> pp_text(string:join(Q, ".")).
|
|
|
|
pp_text(<<>>) -> prettypr:text("\"\"");
|
|
pp_text(Bin) when is_binary(Bin) -> prettypr:text(lists:flatten(io_lib:format("~p", [binary_to_list(Bin)])));
|
|
pp_text(S) -> prettypr:text(lists:concat([S])).
|
|
|
|
pp_beside([]) -> prettypr:empty();
|
|
pp_beside([X]) -> X;
|
|
pp_beside([X | Xs]) -> pp_beside(X, pp_beside(Xs)).
|
|
|
|
pp_beside(A, B) -> prettypr:beside(A, B).
|
|
|
|
pp_above([]) -> prettypr:empty();
|
|
pp_above([X]) -> X;
|
|
pp_above([X | Xs]) -> pp_above(X, pp_above(Xs)).
|
|
|
|
pp_above(A, B) -> prettypr:above(A, B).
|
|
|
|
pp_parens(Doc) -> pp_beside([pp_text("("), Doc, pp_text(")")]).
|
|
pp_braces(Doc) -> pp_beside([pp_text("{"), Doc, pp_text("}")]).
|
|
|
|
pp_punctuate(_Sep, []) -> [];
|
|
pp_punctuate(_Sep, [X]) -> [X];
|
|
pp_punctuate(Sep, [X | Xs]) -> [pp_beside(X, Sep) | pp_punctuate(Sep, Xs)].
|
|
|
|
pp_par([]) -> prettypr:empty();
|
|
pp_par(Xs) -> prettypr:par(Xs).
|
|
pp_fexpr({lit, {Tag, Lit}}) ->
|
|
aeso_pretty:expr({Tag, [], Lit});
|
|
pp_fexpr(nil) ->
|
|
pp_text("[]");
|
|
pp_fexpr({var, X}) -> pp_text(X);
|
|
pp_fexpr({def, Fun}) -> pp_fun_name(Fun);
|
|
pp_fexpr({def_u, Fun, Ar}) ->
|
|
pp_beside([pp_fun_name(Fun), pp_text("/"), pp_text(Ar)]);
|
|
pp_fexpr({def, Fun, Args}) ->
|
|
pp_call(pp_fun_name(Fun), Args);
|
|
pp_fexpr({con, _, I, []}) ->
|
|
pp_beside(pp_text("C"), pp_text(I));
|
|
pp_fexpr({con, _, I, Es}) ->
|
|
pp_beside(pp_fexpr({con, [], I, []}),
|
|
pp_fexpr({tuple, Es}));
|
|
pp_fexpr({tuple, Es}) ->
|
|
pp_parens(pp_par(pp_punctuate(pp_text(","), [pp_fexpr(E) || E <- Es])));
|
|
pp_fexpr({proj, E, I}) ->
|
|
pp_beside([pp_fexpr(E), pp_text("."), pp_text(I)]);
|
|
pp_fexpr({lam, Xs, A}) ->
|
|
pp_par([pp_fexpr({tuple, [{var, X} || X <- Xs]}), pp_text("=>"),
|
|
prettypr:nest(2, pp_fexpr(A))]);
|
|
pp_fexpr({closure, Fun, ClEnv}) ->
|
|
FVs = case ClEnv of
|
|
{tuple, Xs} -> Xs;
|
|
{var, _} -> [ClEnv]
|
|
end,
|
|
pp_call(pp_text("__CLOSURE__"), [{def, Fun} | FVs]);
|
|
pp_fexpr({set_proj, E, I, A}) ->
|
|
pp_beside(pp_fexpr(E), pp_braces(pp_beside([pp_text(I), pp_text(" = "), pp_fexpr(A)])));
|
|
pp_fexpr({op, Op, [A, B] = Args}) ->
|
|
case is_infix(Op) of
|
|
false -> pp_call(pp_text(Op), Args);
|
|
true -> pp_parens(pp_par([pp_fexpr(A), pp_text(Op), pp_fexpr(B)]))
|
|
end;
|
|
pp_fexpr({op, Op, [A] = Args}) ->
|
|
case is_infix(Op) of
|
|
false -> pp_call(pp_text(Op), Args);
|
|
true -> pp_parens(pp_par([pp_text(Op), pp_fexpr(A)]))
|
|
end;
|
|
pp_fexpr({op, Op, As}) ->
|
|
pp_beside(pp_text(Op), pp_fexpr({tuple, As}));
|
|
pp_fexpr({'let', X, A, B}) ->
|
|
pp_par([pp_beside([pp_text("let "), pp_text(X), pp_text(" = "), pp_fexpr(A), pp_text(" in")]),
|
|
pp_fexpr(B)]);
|
|
pp_fexpr({builtin_u, B, N}) ->
|
|
pp_beside([pp_text(B), pp_text("/"), pp_text(N)]);
|
|
pp_fexpr({builtin, B, As}) ->
|
|
pp_call(pp_text(B), As);
|
|
pp_fexpr({remote_u, Ct, Fun, Ar}) ->
|
|
pp_beside([pp_fexpr(Ct), pp_text("."), pp_fun_name(Fun), pp_text("/"), pp_text(Ar)]);
|
|
pp_fexpr({remote, Ct, Fun, As}) ->
|
|
pp_call(pp_beside([pp_fexpr(Ct), pp_text("."), pp_fun_name(Fun)]), As);
|
|
pp_fexpr({funcall, Fun, As}) ->
|
|
pp_call(pp_fexpr(Fun), As);
|
|
pp_fexpr({switch, Split}) -> pp_split(Split).
|
|
|
|
pp_call(Fun, Args) ->
|
|
pp_beside(Fun, pp_fexpr({tuple, Args})).
|
|
|
|
pp_ftype(T) when is_atom(T) -> pp_text(T);
|
|
pp_ftype(any) -> pp_text("_");
|
|
pp_ftype({tuple, Ts}) ->
|
|
pp_parens(pp_par(pp_punctuate(pp_text(","), [pp_ftype(T) || T <- Ts])));
|
|
pp_ftype({list, T}) ->
|
|
pp_beside([pp_text("list("), pp_ftype(T), pp_text(")")]);
|
|
pp_ftype({function, Args, Res}) ->
|
|
pp_par([pp_ftype({tuple, Args}), pp_text("=>"), pp_ftype(Res)]);
|
|
pp_ftype({map, Key, Val}) ->
|
|
pp_beside([pp_text("map"), pp_ftype({tuple, [Key, Val]})]);
|
|
pp_ftype({variant, Cons}) ->
|
|
pp_par(
|
|
pp_punctuate(pp_text(" |"),
|
|
[ case Args of
|
|
[] -> pp_fexpr({con, [], I - 1, []});
|
|
_ -> pp_beside(pp_fexpr({con, [], I - 1, []}), pp_ftype({tuple, Args}))
|
|
end || {I, Args} <- indexed(Cons)])).
|
|
|
|
pp_split({nosplit, E}) -> pp_fexpr(E);
|
|
pp_split({split, Type, X, Alts}) ->
|
|
pp_above([pp_beside([pp_text("switch("), pp_text(X), pp_text(" : "), pp_ftype(Type), pp_text(")")])] ++
|
|
[prettypr:nest(2, pp_case(Alt)) || Alt <- Alts]).
|
|
|
|
pp_case({'case', Pat, Split}) ->
|
|
prettypr:sep([pp_beside(pp_pat(Pat), pp_text(" =>")),
|
|
prettypr:nest(2, pp_split(Split))]).
|
|
|
|
pp_pat({tuple, Xs}) -> pp_fexpr({tuple, [{var, X} || X <- Xs]});
|
|
pp_pat({'::', X, Xs}) -> pp_fexpr({op, '::', [{var, X}, {var, Xs}]});
|
|
pp_pat({con, As, I, Xs}) -> pp_fexpr({con, As, I, [{var, X} || X <- Xs]});
|
|
pp_pat({var, X}) -> pp_fexpr({var, X});
|
|
pp_pat(P = {Tag, _}) when Tag == bool; Tag == int; Tag == string
|
|
-> pp_fexpr({lit, P});
|
|
pp_pat(Pat) -> pp_fexpr(Pat).
|
|
|
|
is_infix(Op) ->
|
|
C = hd(atom_to_list(Op)),
|
|
C < $a orelse C > $z.
|
|
|