sophia/src/aeso_fcode_to_fate.erl
2019-05-07 13:16:38 +02:00

334 lines
11 KiB
Erlang

%%%-------------------------------------------------------------------
%%% @author Ulf Norell
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc
%%% Fate backend for Sophia compiler
%%% @end
%%% Created : 11 Jan 2019
%%%
%%%-------------------------------------------------------------------
-module(aeso_fcode_to_fate).
-export([compile/2]).
%% -- Preamble ---------------------------------------------------------------
-define(TODO(What), error({todo, ?FILE, ?LINE, ?FUNCTION_NAME, What})).
-define(i(X), {immediate, X}).
-define(a, {stack, 0}).
-define(IsStackArg(X), (element(1, X) =:= stack)).
-define(IsBinOp(Op),
(Op =:= 'ADD' orelse
Op =:= 'SUB' orelse
Op =:= 'MUL' orelse
Op =:= 'DIV' orelse
Op =:= 'MOD' orelse
Op =:= 'POW' orelse
Op =:= 'LT' orelse
Op =:= 'GT' orelse
Op =:= 'EQ' orelse
Op =:= 'ELT' orelse
Op =:= 'EGT' orelse
Op =:= 'NEQ' orelse
Op =:= 'AND' orelse
Op =:= 'OR')).
-record(env, { args = [], stack = [], locals = [], tailpos = true }).
%% -- Debugging --------------------------------------------------------------
%% debug(Options, Fmt) -> debug(Options, Fmt, []).
debug(Options, Fmt, Args) ->
case proplists:get_value(debug, Options, true) of
true -> io:format(Fmt, Args);
false -> ok
end.
%% -- Main -------------------------------------------------------------------
%% @doc Main entry point.
compile(ICode, Options) ->
#{ contract_name := _ContractName,
state_type := _StateType,
functions := Functions } = ICode,
SFuns = functions_to_scode(Functions, Options),
SFuns1 = optimize_scode(SFuns, Options),
BBFuns = to_basic_blocks(SFuns1, Options),
FateCode = #{ functions => BBFuns,
symbols => #{},
annotations => #{} },
debug(Options, "~s\n", [aeb_fate_asm:pp(FateCode)]),
FateCode.
make_function_name(init) -> <<"init">>;
make_function_name({entrypoint, Name}) -> Name;
make_function_name({local_fun, Xs}) -> list_to_binary("." ++ string:join(Xs, ".")).
functions_to_scode(Functions, Options) ->
maps:from_list(
[ {make_function_name(Name), function_to_scode(Name, Args, Body, Type, Options)}
|| {Name, #{args := Args,
body := Body,
return := Type}} <- maps:to_list(Functions),
Name /= init ]). %% TODO: skip init for now
function_to_scode(Name, Args, Body, ResType, Options) ->
debug(Options, "Compiling ~p ~p : ~p ->\n ~p\n", [Name, Args, ResType, Body]),
ArgTypes = [ T || {_, T} <- Args ],
SCode = to_scode(init_env(Args), Body),
debug(Options, " scode: ~p\n", [SCode]),
{{ArgTypes, ResType}, SCode}.
%% -- Phase I ----------------------------------------------------------------
%% Icode to structured assembly
%% -- Environment functions --
init_env(Args) ->
#env{ args = Args, stack = [], tailpos = true }.
push_env(Type, Env) ->
Env#env{ stack = [Type | Env#env.stack] }.
bind_local(Name, Env = #env{ locals = Locals }) ->
{length(Locals), Env#env{ locals = Locals ++ [Name] }}.
notail(Env) -> Env#env{ tailpos = false }.
lookup_var(Env = #env{ args = Args, locals = Locals }, X) ->
case {find_index(X, Locals), keyfind_index(X, 1, Args)} of
{false, false} -> error({unbound_variable, X, Env});
{false, Arg} -> {arg, Arg};
{Local, _} -> {var, Local}
end.
%% -- The compiler --
to_scode(_Env, {integer, N}) ->
[aeb_fate_code:push(?i(N))]; %% Doesn't exist (yet), translated by desugaring
to_scode(Env, {var, X}) ->
[aeb_fate_code:push(lookup_var(Env, X))];
to_scode(Env, {binop, Type, Op, A, B}) ->
[ to_scode(notail(Env), B),
to_scode(push_env(Type, Env), A),
binop_to_scode(Op) ];
to_scode(Env, {'if', Dec, Then, Else}) ->
[ to_scode(notail(Env), Dec),
{ifte, to_scode(Env, Then), to_scode(Env, Else)} ];
to_scode(Env, {switch, Expr, Alts}) ->
[ to_scode(notail(Env), Expr),
alts_to_scode(Env, Alts) ];
to_scode(_Env, Icode) -> ?TODO(Icode).
alts_to_scode(Env, [{'case', {var, X}, Body}]) ->
{I, Env1} = bind_local(X, Env),
[ aeb_fate_code:store({var, I}, {stack, 0}),
to_scode(Env1, Body) ];
alts_to_scode(Env, Alts = [{'case', {tuple, Pats}, Body}]) ->
Xs = lists:flatmap(fun({var, X}) -> [X]; (_) -> [] end, Pats),
case length(Xs) == length(Pats) of
false -> ?TODO(Alts);
true ->
{Is, Env1} = lists:foldl(fun(X, {Is, E}) -> {I, E1} = bind_local(X, E), {[I|Is], E1} end,
{[], Env}, Xs),
[ [[aeb_fate_code:dup(),
aeb_fate_code:element_op({var, X}, ?i(J), ?a)]
|| {J, X} <- with_ixs(lists:reverse(Is))],
to_scode(Env1, Body) ]
end;
alts_to_scode(_Env, Alts) ->
?TODO(Alts).
%% -- Operators --
binop_to_scode('+') -> add_a_a_a(); %% Optimization introduces other variants
binop_to_scode('-') -> sub_a_a_a();
binop_to_scode('==') -> eq_a_a_a().
% binop_to_scode(Op) -> ?TODO(Op).
add_a_a_a() -> aeb_fate_code:add(?a, ?a, ?a).
sub_a_a_a() -> aeb_fate_code:sub(?a, ?a, ?a).
eq_a_a_a() -> aeb_fate_code:eq(?a, ?a, ?a).
%% -- Phase II ---------------------------------------------------------------
%% Optimize
optimize_scode(Funs, Options) ->
maps:map(fun(Name, Def) -> optimize_fun(Funs, Name, Def, Options) end,
Funs).
flatten(Code) -> lists:map(fun flatten_s/1, lists:flatten(Code)).
flatten_s({ifte, Then, Else}) -> {ifte, flatten(Then), flatten(Else)};
flatten_s(I) -> I.
optimize_fun(_Funs, Name, {{Args, Res}, Code}, Options) ->
Code0 = flatten(Code),
debug(Options, "Optimizing ~s\n", [Name]),
debug(Options, " original : ~p\n", [Code0]),
Code1 = simplify(Code0),
debug(Options, " simplified: ~p\n", [Code1]),
Code2 = desugar(Code1),
debug(Options, " desugared : ~p\n", [Code2]),
{{Args, Res}, Code2}.
simplify([]) -> [];
simplify([I | Code]) ->
simpl_top(simpl_s(I), simplify(Code)).
simpl_s({ifte, Then, Else}) ->
{ifte, simplify(Then), simplify(Else)};
simpl_s(I) -> I.
%% Removing pushes that are immediately consumed.
simpl_top({'PUSH', A}, [{Op, R, ?a, B} | Code]) when ?IsBinOp(Op) ->
simpl_top({Op, R, A, B}, Code);
simpl_top({'PUSH', B}, [{Op, R, A, ?a} | Code]) when not ?IsStackArg(A), ?IsBinOp(Op) ->
simpl_top({Op, R, A, B}, Code);
simpl_top({'PUSH', A}, [{Op1, ?a, B, C}, {Op2, R, ?a, ?a} | Code]) when ?IsBinOp(Op1), ?IsBinOp(Op2) ->
simpl_top({Op1, ?a, B, C}, [{Op2, R, ?a, A} | Code]);
%% Writing directly to memory instead of going through the accumulator.
simpl_top({Op, ?a, A, B}, [{'STORE', R, ?a} | Code]) when ?IsBinOp(Op) ->
simpl_top({Op, R, A, B}, Code);
simpl_top(I, Code) -> [I | Code].
%% Desugar and specialize
desugar({'ADD', ?a, ?i(1), ?a}) -> [aeb_fate_code:inc()];
desugar({'SUB', ?a, ?a, ?i(1)}) -> [aeb_fate_code:dec()];
desugar({ifte, Then, Else}) -> [{ifte, desugar(Then), desugar(Else)}];
desugar(Code) when is_list(Code) ->
lists:flatmap(fun desugar/1, Code);
desugar(I) -> [I].
%% -- Phase III --------------------------------------------------------------
%% Constructing basic blocks
to_basic_blocks(Funs, Options) ->
maps:from_list([ {Name, {{Args, Res},
bb(Name, Code ++ [aeb_fate_code:return()], Options)}}
|| {Name, {{Args, Res}, Code}} <- maps:to_list(Funs) ]).
bb(_Name, Code, _Options) ->
Blocks0 = blocks(Code),
Blocks = optimize_blocks(Blocks0),
Labels = maps:from_list([ {Ref, I} || {I, {Ref, _}} <- with_ixs(Blocks) ]),
BBs = [ set_labels(Labels, B) || B <- Blocks ],
maps:from_list(BBs).
%% -- Break up scode into basic blocks --
blocks(Code) ->
Top = make_ref(),
blocks([{Top, Code}], []).
blocks([], Acc) ->
lists:reverse(Acc);
blocks([{Ref, Code} | Blocks], Acc) ->
block(Ref, Code, [], Blocks, Acc).
block(Ref, [], CodeAcc, Blocks, BlockAcc) ->
blocks(Blocks, [{Ref, lists:reverse(CodeAcc)} | BlockAcc]);
block(Ref, [{ifte, Then, Else} | Code], Acc, Blocks, BlockAcc) ->
ThenLbl = make_ref(),
RestLbl = make_ref(),
block(Ref, Else ++ [{jump, RestLbl}],
[{jumpif, ThenLbl} | Acc],
[{ThenLbl, Then ++ [{jump, RestLbl}]},
{RestLbl, Code} | Blocks],
BlockAcc);
block(Ref, [I | Code], Acc, Blocks, BlockAcc) ->
block(Ref, Code, [I | Acc], Blocks, BlockAcc).
%% -- Reorder, inline, and remove dead blocks --
optimize_blocks(Blocks) ->
%% We need to look at the last instruction a lot, so reverse all blocks.
Rev = fun(Bs) -> [ {Ref, lists:reverse(Code)} || {Ref, Code} <- Bs ] end,
RBlocks = Rev(Blocks),
RBlockMap = maps:from_list(RBlocks),
RBlocks1 = reorder_blocks(RBlocks, []),
RBlocks2 = [ {Ref, inline_block(RBlockMap, Ref, Code)} || {Ref, Code} <- RBlocks1 ],
RBlocks3 = remove_dead_blocks(RBlocks2),
Rev(RBlocks3).
%% Choose the next block based on the final jump.
reorder_blocks([], Acc) ->
lists:reverse(Acc);
reorder_blocks([{Ref, Code} | Blocks], Acc) ->
reorder_blocks(Ref, Code, Blocks, Acc).
reorder_blocks(Ref, Code, Blocks, Acc) ->
Acc1 = [{Ref, Code} | Acc],
case Code of
['RETURN'|_] -> reorder_blocks(Blocks, Acc1);
[{'RETURNR', _}|_] -> reorder_blocks(Blocks, Acc1);
[{jump, L}|_] ->
NotL = fun({L1, _}) -> L1 /= L end,
case lists:splitwith(NotL, Blocks) of
{Blocks1, [{L, Code1} | Blocks2]} ->
reorder_blocks(L, Code1, Blocks1 ++ Blocks2, Acc1);
{_, []} -> reorder_blocks(Blocks, Acc1)
end
end.
%% Inline short blocks (≤ 2 instructions)
inline_block(BlockMap, Ref, [{jump, L} | Code] = Code0) when L /= Ref ->
case maps:get(L, BlockMap, nocode) of
Dest when length(Dest) < 3 ->
%% Remove Ref to avoid infinite loops
inline_block(maps:remove(Ref, BlockMap), L, Dest) ++ Code;
_ -> Code0
end;
inline_block(_, _, Code) -> Code.
%% Remove unused blocks
remove_dead_blocks(Blocks = [{Top, _} | _]) ->
BlockMap = maps:from_list(Blocks),
LiveBlocks = chase_labels([Top], BlockMap, #{}),
[ B || B = {L, _} <- Blocks, maps:is_key(L, LiveBlocks) ].
chase_labels([], _, Live) -> Live;
chase_labels([L | Ls], Map, Live) ->
Code = maps:get(L, Map),
Jump = fun({jump, A}) -> [A || not maps:is_key(A, Live)];
({jumpif, A}) -> [A || not maps:is_key(A, Live)];
(_) -> [] end,
New = lists:flatmap(Jump, Code),
chase_labels(New ++ Ls, Map, Live#{ L => true }).
%% -- Translate label refs to indices --
set_labels(Labels, {Ref, Code}) when is_reference(Ref) ->
{maps:get(Ref, Labels), [ set_labels(Labels, I) || I <- Code ]};
set_labels(Labels, {jump, Ref}) -> aeb_fate_code:jump(maps:get(Ref, Labels));
set_labels(Labels, {jumpif, Ref}) -> aeb_fate_code:jumpif(?a, maps:get(Ref, Labels));
set_labels(_, I) -> I.
%% -- Helpers ----------------------------------------------------------------
with_ixs(Xs) ->
lists:zip(lists:seq(0, length(Xs) - 1), Xs).
keyfind_index(X, J, Xs) ->
case [ I || {I, E} <- with_ixs(Xs), X == element(J, E) ] of
[I | _] -> I;
[] -> false
end.
find_index(X, Xs) ->
case lists:keyfind(X, 2, with_ixs(Xs)) of
{I, _} -> I;
false -> false
end.