sophia/src/aeso_ast_to_fcode.erl
2019-05-07 13:16:38 +02:00

678 lines
24 KiB
Erlang

%%%-------------------------------------------------------------------
%%% @author Ulf Norell
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc
%%% Compiler from Aeterinty Sophia language to Fate intermediate code.
%%% @end
%%% Created : 26 Mar 2019
%%%
%%%-------------------------------------------------------------------
-module(aeso_ast_to_fcode).
-export([ast_to_fcode/2, format_fexpr/1]).
-export_type([fcode/0, fexpr/0, fun_def/0]).
%% -- Type definitions -------------------------------------------------------
-type option() :: term().
-type attribute() :: stateful | pure.
-type fun_name() :: {entrypoint, binary()}
| {local_fun, [string()]}
| init.
-type var_name() :: string().
-type sophia_name() :: [string()].
-type binop() :: '+' | '-' | '==' | '::'.
-type fexpr() :: {int, integer()}
| {bool, false | true}
| nil
| {var, var_name()}
| {tuple, [fexpr()]}
| {proj, fexpr(), integer()}
| {binop, binop(), fexpr(), fexpr()}
| {'let', var_name(), fexpr(), fexpr()}
| {switch, fsplit()}.
-type fsplit() :: {split, ftype(), var_name(), [fcase()]}
| {nosplit, fexpr()}.
-type fcase() :: {'case', fsplit_pat(), fsplit()}.
-type fsplit_pat() :: {var, var_name()}
| {bool, false | true}
| {int, integer()}
| nil
| {'::', var_name(), var_name()}
| {tuple, [var_name()]}.
-type ftype() :: integer
| boolean
| {list, ftype()}
| {map, ftype(), ftype()}
| {tuple, [ftype()]}
| address
| hash
| signature
| contract
| oracle
| oracle_query
| name
| channel
| bits
| {variant, [[ftype()]]}.
-type fun_def() :: #{ attrs := [attribute()],
args := [{var_name(), ftype()}],
return := ftype(),
body := fexpr() }.
-type fcode() :: #{ contract_name := string(),
state_type := ftype(),
event_type := ftype() | none,
functions := #{ fun_name() => fun_def() } }.
-type type_def() :: fun(([ftype()]) -> ftype()).
-type type_env() :: #{ sophia_name() => type_def() }.
-type fun_env() :: #{ sophia_name() => fun_name() }.
-type context() :: {main_contract, string()}
| {namespace, string()}
| {abstract_contract, string()}.
-type env() :: #{ type_env := type_env(),
fun_env := fun_env(),
options := [option()],
context => context(),
functions := #{ fun_name() => fun_def() } }.
%% -- Entrypoint -------------------------------------------------------------
%% Main entrypoint. Takes typed syntax produced by aeso_ast_infer_types:infer/1,2
%% and produces Fate intermediate code.
-spec ast_to_fcode(aeso_syntax:ast(), [option()]) -> fcode().
ast_to_fcode(Code, Options) ->
to_fcode(init_env(Options), Code).
%% -- Environment ------------------------------------------------------------
-spec init_env([option()]) -> env().
init_env(Options) ->
#{ type_env => init_type_env(),
fun_env => #{}, %% TODO: builtin functions here?
options => Options,
functions => #{} }.
-define(type(T), fun([]) -> T end).
-define(type(X, T), fun([X]) -> T end).
-define(type(X, Y, T), fun([X, Y]) -> T end).
-spec init_type_env() -> type_env().
init_type_env() ->
#{ ["int"] => ?type(integer),
["bool"] => ?type(boolean),
["bits"] => ?type(bits),
["string"] => ?type(string),
["address"] => ?type(address),
["hash"] => ?type(hash),
["signature"] => ?type(signature),
["oracle"] => ?type(_, _, oracle),
["oracle_query"] => ?type(_, _, oracle_query), %% TODO: not in Fate
["list"] => ?type(T, {list, T}),
["map"] => ?type(K, V, {map, K, V}),
["option"] => ?type(T, {variant, [[], [T]]}),
["Chain", "ttl"] => ?type({variant, [[integer], [integer]]})
}.
%% -- Compilation ------------------------------------------------------------
-spec to_fcode(env(), aeso_syntax:ast()) -> fcode().
to_fcode(Env, [{contract, _, {con, _, Main}, Decls}]) ->
#{ functions := Funs } = Env1 =
decls_to_fcode(Env#{ context => {main_contract, Main} }, Decls),
StateType = lookup_type(Env1, [Main, "state"], [], {tuple, []}),
EventType = lookup_type(Env1, [Main, "event"], [], none),
#{ contract_name => Main,
state_type => StateType,
event_type => EventType,
functions => Funs };
to_fcode(Env, [{contract, _, {con, _, Con}, Decls} | Code]) ->
Env1 = decls_to_fcode(Env#{ context => {abstract_contract, Con} }, Decls),
to_fcode(Env1, Code);
to_fcode(Env, [{namespace, _, {con, _, Con}, Decls} | Code]) ->
Env1 = decls_to_fcode(Env#{ context => {namespace, Con} }, Decls),
to_fcode(Env1, Code).
-spec decls_to_fcode(env(), [aeso_syntax:decl()]) -> env().
decls_to_fcode(Env, Decls) ->
%% First compute mapping from Sophia names to fun_names and add it to the
%% environment.
Env1 = add_fun_env(Env, Decls),
lists:foldl(fun(D, E) ->
init_fresh_names(),
R = decl_to_fcode(E, D),
clear_fresh_names(),
R
end, Env1, Decls).
-spec decl_to_fcode(env(), aeso_syntax:decl()) -> env().
decl_to_fcode(Env, {type_decl, _, _, _}) -> Env;
decl_to_fcode(Env, {fun_decl, _, _, _}) -> Env;
decl_to_fcode(Env, {type_def, _Ann, Name, Args, Def}) ->
typedef_to_fcode(Env, Name, Args, Def);
decl_to_fcode(Env = #{ functions := Funs }, {letfun, Ann, {id, _, Name}, Args, Ret, Body}) ->
Attrs = get_attributes(Ann),
FName = lookup_fun(Env, qname(Env, Name)),
FArgs = args_to_fcode(Env, Args),
FBody = expr_to_fcode(Env, Body),
%% io:format("Body of ~s:\n~s\n", [Name, format_fexpr(FBody)]),
Def = #{ attrs => Attrs,
args => FArgs,
return => type_to_fcode(Env, Ret),
body => FBody },
NewFuns = Funs#{ FName => Def },
Env#{ functions := NewFuns }.
-spec typedef_to_fcode(env(), aeso_syntax:id(), [aeso_syntax:tvar()], aeso_syntax:type_def()) -> env().
typedef_to_fcode(Env, {id, _, Name}, Xs, Def) ->
Q = qname(Env, Name),
FDef = fun(Args) ->
case Def of
{record_t, Fields} -> {todo, Xs, Args, record_t, Fields};
{variant_t, Cons} -> {todo, Xs, Args, variant_t, Cons};
{alias_t, Type} -> {todo, Xs, Args, alias_t, Type}
end end,
bind_type(Env, Q, FDef).
-spec type_to_fcode(env(), aeso_syntax:type()) -> ftype().
type_to_fcode(Env, {app_t, _, T = {Id, _, _}, Types}) when Id == id; Id == qid ->
lookup_type(Env, T, [type_to_fcode(Env, Type) || Type <- Types]);
type_to_fcode(Env, T = {Id, _, _}) when Id == id; Id == qid ->
lookup_type(Env, T, []);
type_to_fcode(Env, {tuple_t, _, Types}) ->
{tuple, [type_to_fcode(Env, T) || T <- Types]};
type_to_fcode(Env, {record_t, Fields}) ->
FieldType = fun({field_t, _, _, Ty}) -> Ty end,
type_to_fcode(Env, {tuple_t, [], lists:map(FieldType, Fields)});
type_to_fcode(_Env, Type) ->
error({todo, Type}).
-spec args_to_fcode(env(), [aeso_syntax:arg()]) -> [{var_name(), ftype()}].
args_to_fcode(Env, Args) ->
[ {Name, type_to_fcode(Env, Type)} || {arg, _, {id, _, Name}, Type} <- Args ].
-spec expr_to_fcode(env(), aeso_syntax:expr()) -> fexpr().
expr_to_fcode(Env, {typed, _, Expr, Type}) ->
expr_to_fcode(Env, Type, Expr);
expr_to_fcode(Env, Expr) ->
expr_to_fcode(Env, no_type, Expr).
-spec expr_to_fcode(env(), aeso_syntax:type() | no_type, aeso_syntax:expr()) -> fexpr().
%% Literals
expr_to_fcode(_Env, _Type, {int, _, N}) -> {int, N};
expr_to_fcode(_Env, _Type, {bool, _, B}) -> {bool, B};
%% Variables
expr_to_fcode(_Env, _Type, {id, _, X}) -> {var, X};
%% Tuples
expr_to_fcode(Env, _Type, {tuple, _, Es}) ->
{tuple, [expr_to_fcode(Env, E) || E <- Es]};
%% Records
expr_to_fcode(Env, _Type, {proj, _Ann, Rec, X}) ->
{proj, expr_to_fcode(Env, Rec), field_index(Rec, X)};
expr_to_fcode(Env, {record_t, FieldTypes}, {record, _Ann, Fields}) ->
{tuple, [expr_to_fcode(Env, field_value(F, Fields)) || F <- FieldTypes]};
%% Lists
expr_to_fcode(Env, _Type, {list, _, Es}) ->
lists:foldr(fun(E, L) -> {binop, '::', expr_to_fcode(Env, E), L} end,
nil, Es);
%% Conditionals
expr_to_fcode(Env, _Type, {'if', _, Cond, Then, Else}) ->
Switch = fun(X) ->
{switch, {split, boolean, X,
[{'case', {bool, false}, {nosplit, expr_to_fcode(Env, Else)}},
{'case', {bool, true}, {nosplit, expr_to_fcode(Env, Then)}}]}}
end,
case Cond of
{var, X} -> Switch(X);
_ ->
X = fresh_name(),
{'let', X, expr_to_fcode(Env, Cond), Switch(X)}
end;
%% Switch
expr_to_fcode(Env, _, {switch, _, Expr = {typed, _, E, Type}, Alts}) ->
Switch = fun(X) ->
{switch, alts_to_fcode(Env, type_to_fcode(Env, Type), X, Alts)}
end,
case E of
{id, _, X} -> Switch(X);
_ ->
X = fresh_name(),
{'let', X, expr_to_fcode(Env, Expr),
Switch(X)}
end;
%% Blocks
expr_to_fcode(Env, _Type, {block, _, Stmts}) ->
stmts_to_fcode(Env, Stmts);
%% Binary operator
expr_to_fcode(Env, _Type, {app, _Ann, {Op, _}, [A, B]}) when is_atom(Op) ->
FOp = binop_to_fcode(Op),
{binop, FOp, expr_to_fcode(Env, A), expr_to_fcode(Env, B)};
expr_to_fcode(_Env, Type, Expr) ->
error({todo, {Expr, ':', Type}}).
binop_to_fcode(Op) when Op == '+'; Op == '-'; Op == '==' -> Op.
-spec alts_to_fcode(env(), ftype(), var_name(), [aeso_syntax:alt()]) -> fsplit().
alts_to_fcode(Env, Type, X, Alts) ->
FAlts = [alt_to_fcode(Env, Alt) || Alt <- Alts],
split_tree(Env, [{X, Type}], FAlts).
%% Intermediate format before case trees (fcase() and fsplit()).
-type falt() :: {'case', [fpat()], fexpr()}.
-type fpat() :: {var, var_name()}
| {bool, false | true}
| {int, integer()}
| nil | {'::', fpat(), fpat()}
| {tuple, [fpat()]}.
%% %% Invariant: the number of variables matches the number of patterns in each falt.
-spec split_tree(env(), [{var_name(), ftype()}], [falt()]) -> fsplit().
split_tree(_Env, _Vars, []) ->
error(non_exhaustive_patterns); %% TODO: nice error
split_tree(Env, Vars, Alts = [{'case', Pats, Body} | _]) ->
case next_split(Pats) of
false ->
Xs = [ X || {X, _} <- Vars ],
Ys = [ Y || {var, Y} <- Pats ],
Ren = [ {Y, X} || {Y, X} <- lists:zip(Ys, Xs), X /= Y, Y /= "_" ],
%% TODO: Unreachable clauses error
{nosplit, rename(Ren, Body)};
I when is_integer(I) ->
{Vars0, [{X, Type} | Vars1]} = lists:split(I - 1, Vars),
SAlts = merge_alts(I, X, [ split_alt(I, A) || A <- Alts ]),
Cases = [ {'case', SPat, split_tree(Env, Vars0 ++ split_vars(SPat, Type) ++ Vars1, FAlts)}
|| {SPat, FAlts} <- SAlts ],
{split, Type, X, Cases}
end.
-spec merge_alts(integer(), var_name(), [{fsplit_pat(), falt()}]) -> [{fsplit_pat(), [falt()]}].
merge_alts(I, X, Alts) ->
merge_alts(I, X, Alts, []).
merge_alts(I, X, Alts, Alts1) ->
lists:foldr(fun(A, As) -> merge_alt(I, X, A, As) end,
Alts1, Alts).
-spec merge_alt(integer(), var_name(), {fsplit_pat(), falt()}, Alts) -> Alts
when Alts :: [{fsplit_pat(), [falt()]}].
merge_alt(_, _, {P, A}, []) -> [{P, [A]}];
merge_alt(I, X, {P, A}, [{Q, As} | Rest]) ->
Match = fun({var, _}, {var, _}) -> match;
({tuple, _}, {tuple, _}) -> match;
({bool, B}, {bool, B}) -> match;
({int, N}, {int, N}) -> match;
(nil, nil) -> match;
({'::', _, _}, {'::', _, _}) -> match;
({var, _}, _) -> expand;
(_, {var, _}) -> insert;
(_, _) -> mismatch
end,
case Match(P, Q) of
match -> [{Q, [A | As]} | Rest];
mismatch -> [{Q, As} | merge_alt(I, X, {P, A}, Rest)];
expand ->
{Before, After} = expand(I, X, P, Q, A),
merge_alts(I, X, Before, [{Q, As} | merge_alts(I, X, After, Rest)]);
insert -> [{P, [A]}, {Q, As} | Rest]
end.
expand(I, X, P, Q, Case = {'case', Ps, E}) ->
{Ps0, [{var, Y} | Ps1]} = lists:split(I - 1, Ps),
{Ps0r, Ren1} = rename_pats([{Y, X} || Y /= X], Ps0),
{Ps1r, Ren2} = rename_pats(Ren1, Ps1),
E1 = rename(Ren2, E),
Splice = fun(N) -> Ps0r ++ lists:duplicate(N, {var, "_"}) ++ Ps1r end,
Type = fun({tuple, Xs}) -> {tuple, length(Xs)};
({bool, _}) -> bool;
({int, _}) -> int;
(nil) -> list;
({'::', _, _}) -> list end,
MkCase = fun(Pat, Vars) -> {Pat, {'case', Splice(Vars), E1}} end,
case Type(Q) of
{tuple, N} -> {[MkCase(Q, N)], []};
bool -> {[MkCase({bool, B}, 0) || B <- [false, true]], []};
int -> {[MkCase(Q, 0)], [{P, Case}]};
list -> {[MkCase(nil, 0), MkCase({'::', fresh_name(), fresh_name()}, 2)], []}
end.
-spec split_alt(integer(), falt()) -> {fsplit_pat(), falt()}.
split_alt(I, {'case', Pats, Body}) ->
{Pats0, [Pat | Pats1]} = lists:split(I - 1, Pats),
{SPat, InnerPats} = split_pat(Pat),
{SPat, {'case', Pats0 ++ InnerPats ++ Pats1, Body}}.
-spec split_pat(fpat()) -> {fsplit_pat(), [fpat()]}.
split_pat(P = {var, _}) -> {{var, fresh_name()}, [P]};
split_pat({bool, B}) -> {{bool, B}, []};
split_pat({int, N}) -> {{int, N}, []};
split_pat(nil) -> {nil, []};
split_pat({'::', P, Q}) -> {{'::', fresh_name(), fresh_name()}, [P, Q]};
split_pat({tuple, Pats}) ->
Xs = [fresh_name() || _ <- Pats],
{{tuple, Xs}, Pats}.
-spec split_vars(fsplit_pat(), ftype()) -> [{var_name(), ftype()}].
split_vars({bool, _}, boolean) -> [];
split_vars({int, _}, integer) -> [];
split_vars(nil, {list, _}) -> [];
split_vars({'::', X, Xs}, {list, T}) -> [{X, T}, {Xs, {list, T}}];
split_vars({tuple, Xs}, {tuple, Ts}) ->
lists:zip(Xs, Ts);
split_vars({var, X}, T) -> [{X, T}].
-spec rename([{var_name(), var_name()}], fexpr()) -> fexpr().
rename(Ren, Expr) ->
case Expr of
{int, _} -> Expr;
{bool, _} -> Expr;
nil -> nil;
{var, X} -> {var, rename_var(Ren, X)};
{tuple, Es} -> {tuple, [rename(Ren, E) || E <- Es]};
{proj, E, I} -> {proj, rename(Ren, E), I};
{binop, Op, E1, E2} -> {binop, Op, rename(Ren, E1), rename(Ren, E2)};
{'let', X, E, Body} ->
{Z, Ren1} = rename_binding(Ren, X),
{'let', Z, rename(Ren, E), rename(Ren1, Body)};
{switch, Split} -> {switch, rename_split(Ren, Split)}
end.
rename_var(Ren, X) -> proplists:get_value(X, Ren, X).
rename_binding(Ren, X) ->
Ren1 = lists:keydelete(X, 1, Ren),
case lists:keymember(X, 2, Ren) of
false -> {X, Ren1};
true ->
Z = fresh_name(),
{Z, [{X, Z} | Ren1]}
end.
rename_bindings(Ren, []) -> {[], Ren};
rename_bindings(Ren, [X | Xs]) ->
{Z, Ren1} = rename_binding(Ren, X),
{Zs, Ren2} = rename_bindings(Ren1, Xs),
{[Z | Zs], Ren2}.
rename_pats(Ren, []) -> {[], Ren};
rename_pats(Ren, [P | Ps]) ->
{Q, Ren1} = rename_pat(Ren, P),
{Qs, Ren2} = rename_pats(Ren1, Ps),
{[Q | Qs], Ren2}.
rename_pat(Ren, P = {bool, _}) -> {P, Ren};
rename_pat(Ren, P = {int, _}) -> {P, Ren};
rename_pat(Ren, P = nil) -> {P, Ren};
rename_pat(Ren, {'::', P, Q}) ->
{P1, Ren1} = rename_pat(Ren, P),
{Q1, Ren2} = rename_pat(Ren1, Q),
{{'::', P1, Q1}, Ren2};
rename_pat(Ren, {var, X}) ->
{Z, Ren1} = rename_binding(Ren, X),
{{var, Z}, Ren1};
rename_pat(Ren, {tuple, Xs}) ->
{Zs, Ren1} = rename_bindings(Ren, Xs),
{{tuple, Zs}, Ren1}.
rename_split(Ren, {split, Type, X, Cases}) ->
{split, Type, rename_var(Ren, X), [rename_case(Ren, C) || C <- Cases]};
rename_split(Ren, {nosplit, E}) -> {nosplit, rename(Ren, E)}.
rename_case(Ren, {'case', Pat, Split}) ->
{Pat1, Ren1} = rename_pat(Ren, Pat),
{'case', Pat1, rename_split(Ren1, Split)}.
-spec next_split([fpat()]) -> integer() | false.
next_split(Pats) ->
IsVar = fun({var, _}) -> true; (_) -> false end,
case [ I || {I, P} <- indexed(Pats), not IsVar(P) ] of
[] -> false;
[I | _] -> I
end.
-spec alt_to_fcode(env(), aeso_syntax:alt()) -> falt().
alt_to_fcode(Env, {'case', _, Pat, Expr}) ->
{'case', [pat_to_fcode(Env, Pat)], expr_to_fcode(Env, Expr)}.
-spec pat_to_fcode(env(), aeso_syntax:pat()) -> fpat().
pat_to_fcode(Env, {typed, _, Pat, Type}) ->
pat_to_fcode(Env, Type, Pat);
pat_to_fcode(Env, Pat) ->
pat_to_fcode(Env, no_type, Pat).
-spec pat_to_fcode(env(), aeso_syntax:type() | no_type, aeso_syntax:pat()) -> fpat().
pat_to_fcode(_Env, _Type, {id, _, X}) -> {var, X};
pat_to_fcode(Env, _Type, {tuple, _, Pats}) ->
{tuple, [ pat_to_fcode(Env, Pat) || Pat <- Pats ]};
pat_to_fcode(_Env, _Type, {bool, _, B}) ->
{bool, B};
pat_to_fcode(_Env, _Type, {int, _, N}) ->
{int, N};
pat_to_fcode(Env, _Type, {list, _, Ps}) ->
lists:foldr(fun(P, Qs) ->
{'::', pat_to_fcode(Env, P), Qs}
end, nil, Ps);
pat_to_fcode(Env, _Type, {app, _, {'::', _}, [P, Q]}) ->
{'::', pat_to_fcode(Env, P), pat_to_fcode(Env, Q)};
pat_to_fcode(Env, {record_t, Fields}, {record, _, FieldPats}) ->
FieldPat = fun(F) ->
case field_value(F, FieldPats) of
false -> {id, [], "_"};
Pat -> Pat
end end,
{tuple, [pat_to_fcode(Env, FieldPat(Field))
|| Field <- Fields]};
pat_to_fcode(_Env, Type, Pat) ->
error({todo, Pat, ':', Type}).
-spec stmts_to_fcode(env(), [aeso_syntax:stmt()]) -> fexpr().
stmts_to_fcode(Env, [{letval, _, {typed, _, {id, _, X}, _}, _, Expr} | Stmts]) ->
{'let', X, expr_to_fcode(Env, Expr), stmts_to_fcode(Env, Stmts)};
stmts_to_fcode(Env, [Expr]) ->
expr_to_fcode(Env, Expr).
%% -- Optimisations ----------------------------------------------------------
%% - Translate && and || to ifte
%% - Deadcode elimination
%% - Unused variable analysis (replace by _)
%% - Simplified case trees (FATE has special instructions for shallow matching)
%% - Case specialization
%% - Constant propagation
%% -- Helper functions -------------------------------------------------------
%% -- Types --
-spec lookup_type(env(), aeso_syntax:id() | aeso_syntax:qid() | sophia_name(), [ftype()]) -> ftype().
lookup_type(Env, {id, _, Name}, Args) ->
lookup_type(Env, [Name], Args);
lookup_type(Env, {qid, _, Name}, Args) ->
lookup_type(Env, Name, Args);
lookup_type(Env, Name, Args) ->
case lookup_type(Env, Name, Args, not_found) of
not_found -> error({unknown_type, Name});
Type -> Type
end.
-spec lookup_type(env(), sophia_name(), [ftype()], ftype() | A) -> ftype() | A.
lookup_type(#{ type_env := TypeEnv }, Name, Args, Default) ->
case maps:get(Name, TypeEnv, false) of
false -> Default;
Fun -> Fun(Args)
end.
-spec bind_type(env(), sophia_name(), type_def()) -> env().
bind_type(Env = #{type_env := TEnv}, Q, FDef) ->
Env#{ type_env := TEnv#{ Q => FDef } }.
%% -- Names --
-spec add_fun_env(env(), [aeso_syntax:decl()]) -> env().
add_fun_env(#{ context := {abstract_contract, _} }, _) -> #{}; %% no functions from abstract contracts
add_fun_env(Env = #{ fun_env := FunEnv }, Decls) ->
Entry = fun({letfun, Ann, {id, _, Name}, _, _, _}) ->
[{qname(Env, Name), make_fun_name(Env, Ann, Name)}];
(_) -> [] end,
FunEnv1 = maps:from_list(lists:flatmap(Entry, Decls)),
Env#{ fun_env := maps:merge(FunEnv, FunEnv1) }.
make_fun_name(#{ context := Context }, Ann, Name) ->
Private = proplists:get_value(private, Ann, false) orelse
proplists:get_value(internal, Ann, false),
case Context of
{main_contract, Main} ->
if Private -> {local_fun, [Main, Name]};
Name == "init" -> init;
true -> {entrypoint, list_to_binary(Name)}
end;
{namespace, Lib} ->
{local_fun, [Lib, Name]}
end.
-spec current_namespace(env()) -> string().
current_namespace(#{ context := Cxt }) ->
case Cxt of
{abstract_contract, Con} -> Con;
{main_contract, Con} -> Con;
{namespace, NS} -> NS
end.
-spec qname(env(), string()) -> sophia_name().
qname(Env, Name) ->
[current_namespace(Env), Name].
-spec lookup_fun(env(), sophia_name()) -> fun_name().
lookup_fun(#{ fun_env := FunEnv }, Name) ->
case maps:get(Name, FunEnv, false) of
false -> error({unbound_name, Name});
FName -> FName
end.
init_fresh_names() ->
put('%fresh', 0).
clear_fresh_names() ->
erase('%fresh').
-spec fresh_name() -> var_name().
fresh_name() ->
N = get('%fresh'),
put('%fresh', N + 1),
lists:concat(["%", N]).
%% -- Records --
field_index({typed, _, _, RecTy}, X) ->
field_index(RecTy, X);
field_index({record_t, Fields}, {id, _, X}) ->
IsX = fun({field_t, _, {id, _, Y}, _}) -> X == Y end,
[I] = [ I || {I, Field} <- indexed(Fields), IsX(Field) ],
I - 1. %% Tuples are 0-indexed
field_value({field_t, _, {id, _, X}, _}, Fields) ->
IsX = fun({field, _, [{proj, _, {id, _, Y}}], _}) -> X == Y end,
case [E || {field, _, _, E} = F <- Fields, IsX(F)] of
[E] -> E;
[] -> false
end.
%% -- Attributes --
get_attributes(Ann) ->
[stateful || proplists:get_value(stateful, Ann, false)].
%% -- Basic utilities --
indexed(Xs) ->
lists:zip(lists:seq(1, length(Xs)), Xs).
%% -- Pretty printing --------------------------------------------------------
format_fexpr(E) ->
prettypr:format(pp_fexpr(E)).
pp_text(S) -> prettypr:text(lists:concat([S])).
pp_beside([]) -> prettypr:empty();
pp_beside([X]) -> X;
pp_beside([X | Xs]) -> pp_beside(X, pp_beside(Xs)).
pp_beside(A, B) -> prettypr:beside(A, B).
pp_above([]) -> prettypr:empty();
pp_above([X]) -> X;
pp_above([X | Xs]) -> pp_above(X, pp_above(Xs)).
pp_above(A, B) -> prettypr:above(A, B).
pp_parens(Doc) ->
pp_beside([pp_text("("), Doc, pp_text(")")]).
pp_punctuate(_Sep, []) -> [];
pp_punctuate(_Sep, [X]) -> [X];
pp_punctuate(Sep, [X | Xs]) -> [pp_beside(X, Sep) | pp_punctuate(Sep, Xs)].
pp_fexpr({int, N}) ->
pp_text(N);
pp_fexpr({bool, B}) ->
pp_text(B);
pp_fexpr(nil) ->
pp_text("[]");
pp_fexpr({var, X}) ->
pp_text(X);
pp_fexpr({tuple, Es}) ->
pp_parens(prettypr:par(pp_punctuate(pp_text(","), [pp_fexpr(E) || E <- Es])));
pp_fexpr({proj, E, I}) ->
pp_beside([pp_fexpr(E), pp_text("."), pp_text(I)]);
pp_fexpr({binop, Op, A, B}) ->
pp_parens(prettypr:par([pp_fexpr(A), pp_text(Op), pp_fexpr(B)]));
pp_fexpr({'let', X, A, B}) ->
prettypr:par([pp_beside([pp_text("let "), pp_text(X), pp_text(" = "), pp_fexpr(A), pp_text(" in")]),
pp_fexpr(B)]);
pp_fexpr({switch, Split}) -> pp_split(Split).
pp_ftype(T) when is_atom(T) -> pp_text(T);
pp_ftype({tuple, Ts}) ->
pp_parens(prettypr:par(pp_punctuate(pp_text(","), [pp_ftype(T) || T <- Ts])));
pp_ftype({list, T}) ->
pp_beside([pp_text("list("), pp_ftype(T), pp_text(")")]).
pp_split({nosplit, E}) -> pp_fexpr(E);
pp_split({split, Type, X, Alts}) ->
pp_above([pp_beside([pp_text("switch("), pp_text(X), pp_text(" : "), pp_ftype(Type), pp_text(")")])] ++
[prettypr:nest(2, pp_case(Alt)) || Alt <- Alts]).
pp_case({'case', Pat, Split}) ->
prettypr:sep([pp_beside(pp_pat(Pat), pp_text(" =>")),
prettypr:nest(2, pp_split(Split))]).
pp_pat({tuple, Xs}) -> pp_fexpr({tuple, [{var, X} || X <- Xs]});
pp_pat({'::', X, Xs}) -> pp_fexpr({binop, '::', {var, X}, {var, Xs}});
pp_pat(Pat) -> pp_fexpr(Pat).