sophia/priv/stdlib/Frac.aes

186 lines
5.3 KiB
Plaintext

include "String.aes"
namespace Frac =
private function gcd(a : int, b : int) =
if (b == 0) a else gcd(b, a mod b)
private function abs_int(a : int) = if (a < 0) -a else a
datatype frac = Pos(int, int) | Zero | Neg(int, int)
/** Checks if the internal representation is correct.
* Numerator and denominator must be positive.
* Exposed for debug purposes
*/
function is_sane(f : frac) : bool = switch(f)
Pos(n, d) => n > 0 && d > 0
Zero => true
Neg(n, d) => n > 0 && d > 0
function num(f : frac) : int = switch(f)
Pos(n, _) => n
Neg(n, _) => -n
Zero => 0
function den(f : frac) : int = switch(f)
Pos(_, d) => d
Neg(_, d) => d
Zero => 1
function to_pair(f : frac) : int * int = switch(f)
Pos(n, d) => (n, d)
Neg(n, d) => (-n, d)
Zero => (0, 1)
function sign(f : frac) : int = switch(f)
Pos(_, _) => 1
Neg(_, _) => -1
Zero => 0
function to_str(f : frac) : string = switch(f)
Pos(n, d) => String.concat(Int.to_str(n), if (d == 1) "" else String.concat("/", Int.to_str(d)))
Neg(n, d) => String.concat("-", to_str(Pos(n, d)))
Zero => "0"
/** Reduce fraction to normal form
*/
function simplify(f : frac) : frac =
switch(f)
Neg(n, d) =>
let cd = gcd(n, d)
Neg(n / cd, d / cd)
Zero => Zero
Pos(n, d) =>
let cd = gcd(n, d)
Pos(n / cd, d / cd)
/** Integer to rational division
*/
function make_frac(n : int, d : int) : frac =
if (d == 0) abort("Zero denominator")
elif (n == 0) Zero
elif ((n < 0) == (d < 0)) simplify(Pos(abs_int(n), abs_int(d)))
else simplify(Neg(abs_int(n), abs_int(d)))
function one() : frac = Pos(1, 1)
function zero() : frac = Zero
function eq(a : frac, b : frac) : bool =
let (na, da) = to_pair(a)
let (nb, db) = to_pair(b)
(na == nb && da == db) || na * db == nb * da // they are more likely to be normalized
function neq(a : frac, b : frac) : bool =
let (na, da) = to_pair(a)
let (nb, db) = to_pair(b)
(na != nb || da != db) && na * db != nb * da
function geq(a : frac, b : frac) : bool = num(a) * den(b) >= num(b) * den(a)
function leq(a : frac, b : frac) : bool = num(a) * den(b) =< num(b) * den(a)
function gt(a : frac, b : frac) : bool = num(a) * den(b) > num(b) * den(a)
function lt(a : frac, b : frac) : bool = num(a) * den(b) < num(b) * den(a)
function min(a : frac, b : frac) : frac = if (leq(a, b)) a else b
function max(a : frac, b : frac) : frac = if (geq(a, b)) a else b
function abs(f : frac) : frac = switch(f)
Pos(n, d) => Pos(n, d)
Zero => Zero
Neg(n, d) => Pos(n, d)
function from_int(n : int) : frac =
if (n > 0) Pos(n, 1)
elif (n < 0) Neg(-n, 1)
else Zero
function floor(f : frac) : int = switch(f)
Pos(n, d) => n / d
Zero => 0
Neg(n, d) => -(n + d - 1) / d
function ceil(f : frac) : int = switch(f)
Pos(n, d) => (n + d - 1) / d
Zero => 0
Neg(n, d) => -n / d
function round_to_zero(f : frac) : int = switch(f)
Pos(n, d) => n / d
Zero => 0
Neg(n, d) => -n / d
function round_from_zero(f : frac) : int = switch(f)
Pos(n, d) => (n + d - 1) / d
Zero => 0
Neg(n, d) => -(n + d - 1) / d
/** Round towards nearest integer. If two integers are in the same
* distance, choose the even one.
*/
function round(f : frac) : int =
let fl = floor(f)
let cl = ceil(f)
let dif_fl = abs(sub(f, from_int(fl)))
let dif_cl = abs(sub(f, from_int(cl)))
if (gt(dif_fl, dif_cl)) cl
elif (gt(dif_cl, dif_fl)) fl
elif (fl mod 2 == 0) fl
else cl
function add(a : frac, b : frac) : frac =
let (na, da) = to_pair(a)
let (nb, db) = to_pair(b)
if (da == db) make_frac(na + nb, da)
else make_frac(na * db + nb * da, da * db)
function neg(a : frac) : frac = switch(a)
Neg(n, d) => Pos(n, d)
Zero => Zero
Pos(n, d) => Neg(n, d)
function sub(a : frac, b : frac) : frac = add(a, neg(b))
function inv(a : frac) : frac = switch(a)
Neg(n, d) => Neg(d, n)
Zero => abort("Inversion of zero")
Pos(n, d) => Pos(d, n)
function mul(a : frac, b : frac) : frac = make_frac(num(a) * num(b), den(a) * den(b))
function div(a : frac, b : frac) : frac = switch(b)
Neg(n, d) => mul(a, Neg(d, n))
Zero => abort("Division by zero")
Pos(n, d) => mul(a, Pos(d, n))
/** `b` to the power of `e`
*/
function int_exp(b : frac, e : int) : frac =
if (sign(b) == 0 && e == 0) abort("Zero to the zero exponentation")
elif (e < 0) inv(int_exp_(b, -e))
else int_exp_(b, e)
private function int_exp_(b : frac, e : int) =
if (e == 0) from_int(1)
elif (e == 1) b
else
let half = int_exp_(b, e / 2)
if (e mod 2 == 1) mul(mul(half, half), b)
else mul(half, half)
/** Reduces the fraction's in-memory size by dividing its components by two until the
* the error is bigger than `loss` value
*/
function optimize(f : frac, loss : frac) : frac =
require(geq(loss, Zero), "negative loss optimize")
let s = sign(f)
mul(from_int(s), run_optimize(abs(f), abs(f), loss))
private function run_optimize(orig : frac, f : frac, loss : frac) : frac =
let (n, d) = to_pair(f)
let t = make_frac((n+1)/2, (d+1)/2)
if(gt(abs(sub(t, orig)), loss)) f
elif (eq(t, f)) f
else run_optimize(orig, t, loss)