Deprecate AEVM

This commit is contained in:
radrow 2022-04-12 14:00:14 +02:00
parent c5bfcd3bdc
commit 39326158cb
18 changed files with 217 additions and 3613 deletions

View File

@ -49,8 +49,6 @@ The **pp_** options all print to standard output the following:
`pp_typed_ast` - print the AST with type information at each node
`pp_icode` - print the internal code structure
`pp_assembler` - print the generated assembler code
`pp_bytecode` - print the bytecode instructions

View File

@ -1,4 +1,4 @@
{"1.1.0",
{"1.2.0",
[{<<"aebytecode">>,
{git,"https://github.com/aeternity/aebytecode.git",
{ref,"0699f35b0398bac6cd4468da654d608375bd853d"}},
@ -24,5 +24,8 @@
[
{pkg_hash,[
{<<"eblake2">>, <<"EC8AD20E438AAB3F2E8D5D118C366A0754219195F8A0F536587440F8F9BCF2EF">>},
{<<"getopt">>, <<"C73A9FA687B217F2FF79F68A3B637711BB1936E712B521D8CE466B29CBF7808A">>}]}
{<<"getopt">>, <<"C73A9FA687B217F2FF79F68A3B637711BB1936E712B521D8CE466B29CBF7808A">>}]},
{pkg_hash_ext,[
{<<"eblake2">>, <<"3C4D300A91845B25D501929A26AC2E6F7157480846FAB2347A4C11AE52E08A99">>},
{<<"getopt">>, <<"53E1AB83B9CEB65C9672D3E7A35B8092E9BDC9B3EE80721471A161C10C59959C">>}]}
].

BIN
rebar3

Binary file not shown.

View File

@ -1928,7 +1928,7 @@ infer_infix({RelOp, As})
when RelOp == '=='; RelOp == '!=';
RelOp == '<'; RelOp == '>';
RelOp == '<='; RelOp == '=<'; RelOp == '>=' ->
T = fresh_uvar(As), %% allow any type here, check in ast_to_icode that we have comparison for it
T = fresh_uvar(As), %% allow any type here, check in the backend that we have comparison for it
Bool = {id, As, "bool"},
{fun_t, As, [], [T, T], Bool};
infer_infix({'..', As}) ->

View File

@ -9,7 +9,7 @@
%%%-------------------------------------------------------------------
-module(aeso_ast_to_fcode).
-export([ast_to_fcode/2, format_fexpr/1]).
-export([ast_to_fcode/2, format_fexpr/1, type_to_fcode/2]).
-export_type([fcode/0, fexpr/0, fun_def/0]).
-include("aeso_utils.hrl").

File diff suppressed because it is too large Load Diff

View File

@ -1,684 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc
%%% Compiler builtin functions for Aeterinty Sophia language.
%%% @end
%%% Created : 20 Dec 2018
%%%
%%%-------------------------------------------------------------------
-module(aeso_builtins).
-export([ builtin_function/1
, bytes_to_raw_string/2
, check_event_type/1
, used_builtins/1 ]).
-import(aeso_ast_to_icode, [prim_call/5]).
-include_lib("aebytecode/include/aeb_opcodes.hrl").
-include("aeso_icode.hrl").
used_builtins(#funcall{ function = #var_ref{ name = {builtin, Builtin} }, args = Args }) ->
lists:umerge(dep_closure([Builtin]), used_builtins(Args));
used_builtins([H|T]) ->
lists:umerge(used_builtins(H), used_builtins(T));
used_builtins(T) when is_tuple(T) ->
used_builtins(tuple_to_list(T));
used_builtins(M) when is_map(M) ->
used_builtins(maps:to_list(M));
used_builtins(_) -> [].
builtin_deps(Builtin) ->
lists:usort(builtin_deps1(Builtin)).
builtin_deps1({map_lookup_default, Type}) -> [{map_lookup, Type}];
builtin_deps1({map_get, Type}) -> [{map_lookup, Type}];
builtin_deps1(map_member) -> [{map_lookup, word}];
builtin_deps1({map_upd, Type}) -> [{map_get, Type}, map_put];
builtin_deps1({map_upd_default, Type}) -> [{map_lookup_default, Type}, map_put];
builtin_deps1(map_from_list) -> [map_put];
builtin_deps1(str_equal) -> [str_equal_p];
builtin_deps1(string_concat) -> [string_concat_inner1, string_copy, string_shift_copy];
builtin_deps1(int_to_str) -> [{baseX_int, 10}];
builtin_deps1(addr_to_str) -> [{baseX_int, 58}];
builtin_deps1({baseX_int, X}) -> [{baseX_int_pad, X}];
builtin_deps1({baseX_int_pad, X}) -> [{baseX_int_encode, X}];
builtin_deps1({baseX_int_encode, X}) -> [{baseX_int_encode_, X}, {baseX_tab, X}, {baseX_digits, X}];
builtin_deps1({bytes_to_str, _}) -> [bytes_to_str_worker, bytes_to_str_worker_x];
builtin_deps1(string_reverse) -> [string_reverse_];
builtin_deps1(require) -> [abort];
builtin_deps1(_) -> [].
dep_closure(Deps) ->
case lists:umerge(lists:map(fun builtin_deps/1, Deps)) of
[] -> Deps;
Deps1 -> lists:umerge(Deps, dep_closure(Deps1))
end.
%% Helper functions/macros
v(X) when is_atom(X) -> v(atom_to_list(X));
v(X) when is_list(X) -> #var_ref{name = X}.
option_none() -> {tuple, [{integer, 0}]}.
option_some(X) -> {tuple, [{integer, 1}, X]}.
-define(HASH_BYTES, 32).
-define(call(Fun, Args), #funcall{ function = #var_ref{ name = {builtin, Fun} }, args = Args }).
-define(I(X), {integer, X}).
-define(V(X), v(X)).
-define(A(Op), aeb_opcodes:mnemonic(Op)).
-define(LET(Var, Expr, Body), {switch, Expr, [{v(Var), Body}]}).
-define(DEREF(Var, Ptr, Body), {switch, operand(Ptr), [{{tuple, [v(Var)]}, Body}]}).
-define(NXT(Ptr), op('+', Ptr, 32)).
-define(NEG(A), op('/', A, {unop, '-', {integer, 1}})).
-define(BYTE(Ix, Word), op('byte', Ix, Word)).
-define(EQ(A, B), op('==', A, B)).
-define(LT(A, B), op('<', A, B)).
-define(GT(A, B), op('>', A, B)).
-define(ADD(A, B), op('+', A, B)).
-define(SUB(A, B), op('-', A, B)).
-define(MUL(A, B), op('*', A, B)).
-define(DIV(A, B), op('div', A, B)).
-define(MOD(A, B), op('mod', A, B)).
-define(EXP(A, B), op('^', A, B)).
-define(AND(A, B), op('&&', A, B)).
%% Bit shift operations takes their arguments backwards!?
-define(BSL(X, B), op('bsl', ?MUL(B, 8), X)).
-define(BSR(X, B), op('bsr', ?MUL(B, 8), X)).
op(Op, A, B) -> simpl({binop, Op, operand(A), operand(B)}).
%% We generate a lot of B * 8 for integer B from BSL and BSR.
simpl({binop, '*', {integer, A}, {integer, B}}) when A >= 0, B >= 0, A * B < 1 bsl 256 ->
{integer, A * B};
simpl(Op) -> Op.
operand(A) when is_atom(A) -> v(A);
operand(I) when is_integer(I) -> {integer, I};
operand(T) -> T.
check_event_type(Icode) ->
case maps:get(event_type, Icode) of
{variant_t, Cons} ->
check_event_type(Cons, Icode);
_ ->
error({event_should_be_variant_type})
end.
check_event_type(Evts, Icode) ->
[ check_event_type(Name, Ix, T, Icode)
|| {constr_t, Ann, {con, _, Name}, Types} <- Evts,
{Ix, T} <- lists:zip(aeso_syntax:get_ann(indices, Ann), Types) ].
check_event_type(EvtName, Ix, Type, Icode) ->
VMType =
try
aeso_ast_to_icode:ast_typerep(Type, Icode)
catch _:_ ->
error({EvtName, could_not_resolve_type, Type})
end,
case {Ix, VMType, Type} of
{indexed, word, _} -> ok;
{notindexed, string, _} -> ok;
{notindexed, _, {bytes_t, _, N}} when N > 32 -> ok;
{indexed, _, _} -> error({EvtName, indexed_field_should_be_word, is, VMType});
{notindexed, _, _} -> error({EvtName, payload_should_be_string, is, VMType})
end.
bfun(B, {IArgs, IExpr, IRet}) ->
{{builtin, B}, [private], IArgs, IExpr, IRet}.
builtin_function(BF) ->
case BF of
{event, EventT} -> bfun(BF, builtin_event(EventT));
abort -> bfun(BF, builtin_abort());
block_hash -> bfun(BF, builtin_block_hash());
require -> bfun(BF, builtin_require());
{map_lookup, Type} -> bfun(BF, builtin_map_lookup(Type));
map_put -> bfun(BF, builtin_map_put());
map_delete -> bfun(BF, builtin_map_delete());
map_size -> bfun(BF, builtin_map_size());
{map_get, Type} -> bfun(BF, builtin_map_get(Type));
{map_lookup_default, Type} -> bfun(BF, builtin_map_lookup_default(Type));
map_member -> bfun(BF, builtin_map_member());
{map_upd, Type} -> bfun(BF, builtin_map_upd(Type));
{map_upd_default, Type} -> bfun(BF, builtin_map_upd_default(Type));
map_from_list -> bfun(BF, builtin_map_from_list());
list_concat -> bfun(BF, builtin_list_concat());
string_length -> bfun(BF, builtin_string_length());
string_concat -> bfun(BF, builtin_string_concat());
string_concat_inner1 -> bfun(BF, builtin_string_concat_inner1());
string_copy -> bfun(BF, builtin_string_copy());
string_shift_copy -> bfun(BF, builtin_string_shift_copy());
str_equal_p -> bfun(BF, builtin_str_equal_p());
str_equal -> bfun(BF, builtin_str_equal());
popcount -> bfun(BF, builtin_popcount());
int_to_str -> bfun(BF, builtin_int_to_str());
addr_to_str -> bfun(BF, builtin_addr_to_str());
{baseX_int, X} -> bfun(BF, builtin_baseX_int(X));
{baseX_digits, X} -> bfun(BF, builtin_baseX_digits(X));
{baseX_tab, X} -> bfun(BF, builtin_baseX_tab(X));
{baseX_int_pad, X} -> bfun(BF, builtin_baseX_int_pad(X));
{baseX_int_encode, X} -> bfun(BF, builtin_baseX_int_encode(X));
{baseX_int_encode_, X} -> bfun(BF, builtin_baseX_int_encode_(X));
{bytes_to_int, N} -> bfun(BF, builtin_bytes_to_int(N));
{bytes_to_str, N} -> bfun(BF, builtin_bytes_to_str(N));
{bytes_concat, A, B} -> bfun(BF, builtin_bytes_concat(A, B));
{bytes_split, A, B} -> bfun(BF, builtin_bytes_split(A, B));
bytes_to_str_worker -> bfun(BF, builtin_bytes_to_str_worker());
bytes_to_str_worker_x -> bfun(BF, builtin_bytes_to_str_worker_x());
string_reverse -> bfun(BF, builtin_string_reverse());
string_reverse_ -> bfun(BF, builtin_string_reverse_())
end.
%% Event primitive (dependent on Event type)
%%
%% We need to switch on the event and prepare the correct #event for icode_to_asm
%% NOTE: we assume all errors are already checked!
builtin_event(EventT) ->
A = fun(X) -> aeb_opcodes:mnemonic(X) end,
VIx = fun(Ix) -> v(lists:concat(["v", Ix])) end,
ArgPats = fun(Ts) -> [ VIx(Ix) || Ix <- lists:seq(0, length(Ts) - 1) ] end,
Payload = %% Should put data ptr, length on stack.
fun([]) -> {inline_asm, [A(?PUSH1), 0, A(?PUSH1), 0]};
([{{id, _, "string"}, V}]) ->
{seq, [V, {inline_asm, [A(?DUP1), A(?MLOAD), %% length, ptr
A(?SWAP1), A(?PUSH1), 32, A(?ADD)]}]}; %% ptr+32, length
([{{bytes_t, _, N}, V}]) -> {seq, [V, {integer, N}, {inline_asm, A(?SWAP1)}]}
end,
Ix =
fun({bytes_t, _, N}, V) when N < 32 -> ?BSR(V, 32 - N);
(_, V) -> V end,
Clause =
fun(_Tag, {con, _, Con}, IxTypes) ->
Types = [ T || {_Ix, T} <- IxTypes ],
Indexed = [ Ix(Type, Var) || {Var, {indexed, Type}} <- lists:zip(ArgPats(Types), IxTypes) ],
Data = [ {Type, Var} || {Var, {notindexed, Type}} <- lists:zip(ArgPats(Types), IxTypes) ],
{ok, <<EvtIndexN:256>>} = eblake2:blake2b(?HASH_BYTES, list_to_binary(Con)),
EvtIndex = {integer, EvtIndexN},
{event, lists:reverse(Indexed) ++ [EvtIndex], Payload(Data)}
end,
Pat = fun(Tag, Types) -> {tuple, [{integer, Tag} | ArgPats(Types)]} end,
{variant_t, Cons} = EventT,
Tags = lists:seq(0, length(Cons) - 1),
{[{"e", event}],
{switch, v(e),
[{Pat(Tag, Types), Clause(Tag, Con, lists:zip(aeso_syntax:get_ann(indices, Ann), Types))}
|| {Tag, {constr_t, Ann, Con, Types}} <- lists:zip(Tags, Cons) ]},
{tuple, []}}.
%% Abort primitive.
builtin_abort() ->
A = fun(X) -> aeb_opcodes:mnemonic(X) end,
{[{"s", string}],
{inline_asm, [A(?PUSH1),0, %% Push a dummy 0 for the first arg
A(?REVERT)]}, %% Stack: 0,Ptr
{tuple,[]}}.
builtin_block_hash() ->
{[{"height", word}],
?LET(hash, #prim_block_hash{ height = ?V(height)},
{ifte, ?EQ(hash, 0), option_none(), option_some(?V(hash))}),
aeso_icode:option_typerep(word)}.
builtin_require() ->
{[{"c", word}, {"msg", string}],
{ifte, ?V(c), {tuple, []}, ?call(abort, [?V(msg)])},
{tuple, []}}.
%% Map primitives
builtin_map_lookup(Type) ->
Ret = aeso_icode:option_typerep(Type),
{[{"m", word}, {"k", word}],
prim_call(?PRIM_CALL_MAP_GET, #integer{value = 0},
[#var_ref{name = "m"}, #var_ref{name = "k"}],
[word, word], Ret),
Ret}.
builtin_map_put() ->
%% We don't need the types for put.
{[{"m", word}, {"k", word}, {"v", word}],
prim_call(?PRIM_CALL_MAP_PUT, #integer{value = 0},
[v(m), v(k), v(v)], [word, word, word], word),
word}.
builtin_map_delete() ->
{[{"m", word}, {"k", word}],
prim_call(?PRIM_CALL_MAP_DELETE, #integer{value = 0},
[v(m), v(k)], [word, word], word),
word}.
builtin_map_size() ->
{[{"m", word}],
prim_call(?PRIM_CALL_MAP_SIZE, #integer{value = 0},
[v(m)], [word], word),
word}.
%% Map builtins
builtin_map_get(Type) ->
%% function map_get(m, k) =
%% switch(map_lookup(m, k))
%% Some(v) => v
{[{"m", word}, {"k", word}],
{switch, ?call({map_lookup, Type}, [v(m), v(k)]), [{option_some(v(v)), v(v)}]},
Type}.
builtin_map_lookup_default(Type) ->
%% function map_lookup_default(m, k, default) =
%% switch(map_lookup(m, k))
%% None => default
%% Some(v) => v
{[{"m", word}, {"k", word}, {"default", Type}],
{switch, ?call({map_lookup, Type}, [v(m), v(k)]),
[{option_none(), v(default)},
{option_some(v(v)), v(v)}]},
Type}.
builtin_map_member() ->
%% function map_member(m, k) : bool =
%% switch(Map.lookup(m, k))
%% None => false
%% _ => true
{[{"m", word}, {"k", word}],
{switch, ?call({map_lookup, word}, [v(m), v(k)]),
[{option_none(), {integer, 0}},
{{var_ref, "_"}, {integer, 1}}]},
word}.
builtin_map_upd(Type) ->
%% function map_upd(map, key, fun) =
%% map_put(map, key, fun(map_get(map, key)))
{[{"map", word}, {"key", word}, {"valfun", word}],
?call(map_put,
[v(map), v(key),
#funcall{ function = v(valfun),
args = [?call({map_get, Type}, [v(map), v(key)])] }]),
word}.
builtin_map_upd_default(Type) ->
%% function map_upd(map, key, val, fun) =
%% map_put(map, key, fun(map_lookup_default(map, key, val)))
{[{"map", word}, {"key", word}, {"val", word}, {"valfun", word}],
?call(map_put,
[v(map), v(key),
#funcall{ function = v(valfun),
args = [?call({map_lookup_default, Type}, [v(map), v(key), v(val)])] }]),
word}.
builtin_map_from_list() ->
%% function map_from_list(xs, acc) =
%% switch(xs)
%% [] => acc
%% (k, v) :: xs => map_from_list(xs, acc { [k] = v })
{[{"xs", {list, {tuple, [word, word]}}}, {"acc", word}],
{switch, v(xs),
[{{list, []}, v(acc)},
{{binop, '::', {tuple, [v(k), v(v)]}, v(ys)},
?call(map_from_list,
[v(ys), ?call(map_put, [v(acc), v(k), v(v)])])}]},
word}.
%% list_concat
%%
%% Concatenates two lists.
builtin_list_concat() ->
{[{"l1", {list, word}}, {"l2", {list, word}}],
{switch, v(l1),
[{{list, []}, v(l2)},
{{binop, '::', v(hd), v(tl)},
{binop, '::', v(hd), ?call(list_concat, [v(tl), v(l2)])}}
]
},
word}.
builtin_string_length() ->
%% function length(str) =
%% switch(str)
%% {n} -> n // (ab)use the representation
{[{"s", string}],
?DEREF(n, s, ?V(n)),
word}.
%% str_concat - concatenate two strings
%%
%% Unless the second string is the empty string, a new string is created at the
%% top of the Heap and the address to it is returned. The tricky bit is when
%% the words from the second string has to be shifted to fit next to the first
%% string.
builtin_string_concat() ->
{[{"s1", string}, {"s2", string}],
?DEREF(n1, s1,
?DEREF(n2, s2,
{ifte, ?EQ(n1, 0),
?V(s2), %% First string is empty return second string
{ifte, ?EQ(n2, 0),
?V(s1), %% Second string is empty return first string
?LET(ret, {inline_asm, [?A(?MSIZE)]},
{seq, [?ADD(n1, n2), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]}, %% Store total len
?call(string_concat_inner1, [?V(n1), ?NXT(s1), ?V(n2), ?NXT(s2)]),
{inline_asm, [?A(?POP)]}, %% Discard fun ret val
?V(ret) %% Put the actual return value
]})}
}
)),
word}.
builtin_string_concat_inner1() ->
%% Copy all whole words from the first string, and set up for word fusion
%% Special case when the length of the first string is divisible by 32.
{[{"n1", word}, {"p1", pointer}, {"n2", word}, {"p2", pointer}],
?LET(w1, ?call(string_copy, [?V(n1), ?V(p1)]),
?LET(nx, ?MOD(n1, 32),
{ifte, ?EQ(nx, 0),
?LET(w2, ?call(string_copy, [?V(n2), ?V(p2)]),
{seq, [?V(w2), {inline_asm, [?A(?MSIZE), ?A(?MSTORE), ?A(?MSIZE)]}]}),
?call(string_shift_copy, [?V(nx), ?V(w1), ?V(n2), ?V(p2)])
})),
word}.
builtin_string_copy() ->
{[{"n", word}, {"p", pointer}],
?DEREF(w, p,
{ifte, ?GT(n, 31),
{seq, [?V(w), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
?call(string_copy, [?SUB(n, 32), ?NXT(p)])]},
?V(w)
}),
word}.
builtin_string_shift_copy() ->
{[{"off", word}, {"dst", word}, {"n", word}, {"p", pointer}],
?DEREF(w, p,
{seq, [?ADD(dst, ?BSR(w, off)), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
{ifte, ?GT(n, ?SUB(32, off)),
?call(string_shift_copy, [?V(off), ?BSL(w, ?SUB(32, off)), ?SUB(n, 32), ?NXT(p)]),
{inline_asm, [?A(?MSIZE)]}}]
}),
word}.
builtin_str_equal_p() ->
%% function str_equal_p(n, p1, p2) =
%% if(n =< 0) true
%% else
%% let w1 = *p1
%% let w2 = *p2
%% w1 == w2 && str_equal_p(n - 32, p1 + 32, p2 + 32)
{[{"n", word}, {"p1", pointer}, {"p2", pointer}],
{ifte, ?LT(n, 1),
?I(1),
?DEREF(w1, p1,
?DEREF(w2, p2,
?AND(?EQ(w1, w2),
?call(str_equal_p, [?SUB(n, 32), ?NXT(p1), ?NXT(p2)]))))},
word}.
builtin_str_equal() ->
%% function str_equal(s1, s2) =
%% let n1 = length(s1)
%% let n2 = length(s2)
%% n1 == n2 && str_equal_p(n1, s1 + 32, s2 + 32)
{[{"s1", string}, {"s2", string}],
?DEREF(n1, s1,
?DEREF(n2, s2,
?AND(?EQ(n1, n2), ?call(str_equal_p, [?V(n1), ?NXT(s1), ?NXT(s2)]))
)),
word}.
%% Count the number of 1s in a bit field.
builtin_popcount() ->
%% function popcount(bits, acc) =
%% if (bits == 0) acc
%% else popcount(bits bsr 1, acc + bits band 1)
{[{"bits", word}, {"acc", word}],
{ifte, ?EQ(bits, 0),
?V(acc),
?call(popcount, [op('bsr', 1, bits), ?ADD(acc, op('band', bits, 1))])
}, word}.
builtin_int_to_str() ->
{[{"i", word}], ?call({baseX_int, 10}, [?V(i)]), word}.
builtin_baseX_tab(_X = 10) ->
{[{"ix", word}], ?ADD($0, ix), word};
builtin_baseX_tab(_X = 58) ->
<<Fst32:256>> = <<"123456789ABCDEFGHJKLMNPQRSTUVWXY">>,
<<Lst26:256>> = <<"Zabcdefghijkmnopqrstuvwxyz", 0:48>>,
{[{"ix", word}],
{ifte, ?LT(ix, 32),
?BYTE(ix, Fst32),
?BYTE(?SUB(ix, 32), Lst26)
},
word}.
builtin_baseX_int(X) ->
{[{"w", word}],
?LET(ret, {inline_asm, [?A(?MSIZE)]},
{seq, [?call({baseX_int_pad, X}, [?V(w), ?I(0), ?I(0)]), {inline_asm, [?A(?POP)]}, ?V(ret)]}),
word}.
builtin_baseX_int_pad(X = 10) ->
{[{"src", word}, {"ix", word}, {"dst", word}],
{ifte, ?LT(src, 0),
?call({baseX_int_encode, X}, [?NEG(src), ?I(1), ?BSL($-, 31)]),
?call({baseX_int_encode, X}, [?V(src), ?V(ix), ?V(dst)])},
word};
builtin_baseX_int_pad(X = 16) ->
{[{"src", word}, {"ix", word}, {"dst", word}],
?call({baseX_int_encode, X}, [?V(src), ?V(ix), ?V(dst)]),
word};
builtin_baseX_int_pad(X = 58) ->
{[{"src", word}, {"ix", word}, {"dst", word}],
{ifte, ?GT(?ADD(?DIV(ix, 31), ?BYTE(ix, src)), 0),
?call({baseX_int_encode, X}, [?V(src), ?V(ix), ?V(dst)]),
?call({baseX_int_pad, X}, [?V(src), ?ADD(ix, 1), ?ADD(dst, ?BSL($1, ?SUB(31, ix)))])},
word}.
builtin_baseX_int_encode(X) ->
{[{"src", word}, {"ix", word}, {"dst", word}],
?LET(n, ?call({baseX_digits, X}, [?V(src), ?I(0)]),
{seq, [?ADD(n, ?ADD(ix, 1)), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
?call({baseX_int_encode_, X}, [?V(src), ?V(dst), ?EXP(X, n), ?V(ix)])]}),
word}.
builtin_baseX_int_encode_(X) ->
{[{"src", word}, {"dst", word}, {"fac", word}, {"ix", word}],
{ifte, ?EQ(fac, 0),
{seq, [?V(dst), {inline_asm, [?A(?MSIZE), ?A(?MSTORE), ?A(?MSIZE)]}]},
{ifte, ?EQ(ix, 32),
%% We've filled a word, write it and start on new word
{seq, [?V(dst), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
?call({baseX_int_encode_, X}, [?V(src), ?I(0), ?V(fac), ?I(0)])]},
?call({baseX_int_encode_, X},
[?MOD(src, fac), ?ADD(dst, ?BSL(?call({baseX_tab, X}, [?DIV(src, fac)]), ?SUB(31, ix))),
?DIV(fac, X), ?ADD(ix, 1)])}
},
word}.
builtin_baseX_digits(X) ->
{[{"x0", word}, {"dgts", word}],
?LET(x1, ?DIV(x0, X),
{ifte, ?EQ(x1, 0), ?V(dgts), ?call({baseX_digits, X}, [?V(x1), ?ADD(dgts, 1)])}),
word}.
builtin_bytes_to_int(32) ->
{[{"w", word}], ?V(w), word};
builtin_bytes_to_int(N) when N < 32 ->
{[{"w", word}], ?BSR(w, 32 - N), word};
builtin_bytes_to_int(N) when N > 32 ->
LastFullWord = N div 32 - 1,
Body = case N rem 32 of
0 -> ?DEREF(n, ?ADD(b, LastFullWord * 32), ?V(n));
R ->
?DEREF(hi, ?ADD(b, LastFullWord * 32),
?DEREF(lo, ?ADD(b, (LastFullWord + 1) * 32),
?ADD(?BSR(lo, 32 - R), ?BSL(hi, R))))
end,
{[{"b", pointer}], Body, word}.
%% Two versions of this helper function, worker for sections not even 16 bytes long
%% and worker_x for the full sized chunks.
builtin_bytes_to_str_worker_x() ->
<<Tab:256>> = <<"0123456789ABCDEF________________">>,
{[{"w", word}, {"offs", word}, {"acc", word}],
{ifte, ?EQ(offs, 16), {seq, [?V(acc), {inline_asm, [?A(?MSIZE), ?A(?MSTORE), ?A(?MSIZE)]}]},
?LET(b, ?BYTE(offs, w),
?LET(lo, ?BYTE(?MOD(b, 16), Tab),
?LET(hi, ?BYTE(op('bsr', 4 , b), Tab),
?call(bytes_to_str_worker_x, [?V(w), ?ADD(offs, 1), ?ADD(?BSL(acc, 2), ?ADD(?BSL(hi, 1), lo))]))))
},
word}.
builtin_bytes_to_str_worker() ->
<<Tab:256>> = <<"0123456789ABCDEF________________">>,
{[{"w", word}, {"offs", word}, {"acc", word}, {"stop", word}],
{ifte, ?EQ(stop, offs), {seq, [?BSL(acc, ?MUL(2, ?SUB(16, offs))), {inline_asm, [?A(?MSIZE), ?A(?MSTORE), ?A(?MSIZE)]}]},
?LET(b, ?BYTE(offs, w),
?LET(lo, ?BYTE(?MOD(b, 16), Tab),
?LET(hi, ?BYTE(op('bsr', 4 , b), Tab),
?call(bytes_to_str_worker, [?V(w), ?ADD(offs, 1), ?ADD(?BSL(acc, 2), ?ADD(?BSL(hi, 1), lo)), ?V(stop)]))))
},
word}.
builtin_bytes_to_str_body(Var, N) when N < 16 ->
[?call(bytes_to_str_worker, [?V(Var), ?I(0), ?I(0), ?I(N)])];
builtin_bytes_to_str_body(Var, 16) ->
[?call(bytes_to_str_worker_x, [?V(Var), ?I(0), ?I(0)])];
builtin_bytes_to_str_body(Var, N) when N < 32 ->
builtin_bytes_to_str_body(Var, 16) ++ [{inline_asm, [?A(?POP)]}] ++
[?call(bytes_to_str_worker, [?BSL(Var, 16), ?I(0), ?I(0), ?I(N - 16)])];
builtin_bytes_to_str_body(Var, 32) ->
builtin_bytes_to_str_body(Var, 16) ++ [{inline_asm, [?A(?POP)]}] ++
[?call(bytes_to_str_worker_x, [?BSL(Var, 16), ?I(0), ?I(0)])];
builtin_bytes_to_str_body(Var, N) when N > 32 ->
WholeWords = ((N + 31) div 32) - 1,
lists:append(
[ [?DEREF(w, ?ADD(Var, 32 * I), {seq, builtin_bytes_to_str_body(w, 32)}), {inline_asm, [?A(?POP)]}]
|| I <- lists:seq(0, WholeWords - 1) ]) ++
[ ?DEREF(w, ?ADD(Var, 32 * WholeWords), {seq, builtin_bytes_to_str_body(w, N - WholeWords * 32)}) ].
builtin_bytes_to_str(N) when N =< 32 ->
{[{"w", word}],
?LET(ret, {inline_asm, [?A(?MSIZE)]},
{seq, [?I(N * 2), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]}] ++
builtin_bytes_to_str_body(w, N) ++
[{inline_asm, [?A(?POP)]}, ?V(ret)]}),
string};
builtin_bytes_to_str(N) when N > 32 ->
{[{"p", pointer}],
?LET(ret, {inline_asm, [?A(?MSIZE)]},
{seq, [?I(N * 2), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]}] ++
builtin_bytes_to_str_body(p, N) ++
[{inline_asm, [?A(?POP)]}, ?V(ret)]}),
string}.
builtin_string_reverse() ->
{[{"s", string}],
?DEREF(n, s,
?LET(ret, {inline_asm, [?A(?MSIZE)]},
{seq, [?V(n), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
?call(string_reverse_, [?NXT(s), ?I(0), ?I(31), ?SUB(?V(n), 1)]),
{inline_asm, [?A(?POP)]}, ?V(ret)]})),
word}.
builtin_string_reverse_() ->
{[{"p", pointer}, {"x", word}, {"i1", word}, {"i2", word}],
{ifte, ?LT(i2, 0),
{seq, [?V(x), {inline_asm, [?A(?MSIZE), ?A(?MSTORE), ?A(?MSIZE)]}]},
?LET(p1, ?ADD(p, ?MUL(?DIV(i2, 32), 32)),
?DEREF(w, p1,
?LET(b, ?BYTE(?MOD(i2, 32), w),
{ifte, ?LT(i1, 0),
{seq, [?V(x), {inline_asm, [?A(?MSIZE), ?A(?MSTORE)]},
?call(string_reverse_,
[?V(p), ?BSL(b, 31), ?I(30), ?SUB(i2, 1)])]},
?call(string_reverse_,
[?V(p), ?ADD(x, ?BSL(b, i1)), ?SUB(i1, 1), ?SUB(i2, 1)])})))},
word}.
builtin_addr_to_str() ->
{[{"a", word}], ?call({baseX_int, 58}, [?V(a)]), word}.
%% At most one word
%% | ..... | ========= | ........ |
%% Offs ^ ^- Len -^ TotalLen ^
bytes_slice(Offs, Len, TotalLen, Bytes) when TotalLen =< 32 ->
%% Bytes are packed into a single word
Masked =
case Offs of
0 -> Bytes;
_ -> ?MOD(Bytes, 1 bsl ((32 - Offs) * 8))
end,
Unpadded =
case 32 - (Offs + Len) of
0 -> Masked;
N -> ?BSR(Masked, N)
end,
case Len of
32 -> Unpadded;
_ -> ?BSL(Unpadded, 32 - Len)
end;
bytes_slice(Offs, Len, TotalLen, Bytes) when TotalLen > 32 ->
%% Bytes is a pointer to memory. The VM can read at non-aligned addresses.
%% Might read one word more than necessary.
Word = op('!', Offs, Bytes),
case Len == 32 of
true -> Word;
_ -> ?BSL(?BSR(Word, 32 - Len), 32 - Len)
end.
builtin_bytes_concat(A, B) ->
Type = fun(N) when N =< 32 -> word; (_) -> pointer end,
MkBytes = fun([W]) -> W;
(Ws) -> {tuple, Ws} end,
Words = fun(N) -> (N + 31) div 32 end,
WordsRes = Words(A + B),
Word = fun(I) when 32 * (I + 1) =< A -> bytes_slice(I * 32, 32, A, ?V(a));
(I) when 32 * I < A ->
Len = A rem 32,
Hi = bytes_slice(32 * I, Len, A, ?V(a)),
Lo = bytes_slice(0, min(32 - Len, B), B, ?V(b)),
?ADD(Hi, ?BSR(Lo, Len));
(I) ->
Offs = 32 * I - A,
Len = min(32, B - Offs),
bytes_slice(Offs, Len, B, ?V(b))
end,
Body =
case {A, B} of
{0, _} -> ?V(b);
{_, 0} -> ?V(a);
_ -> MkBytes([ Word(I) || I <- lists:seq(0, WordsRes - 1) ])
end,
{[{"a", Type(A)}, {"b", Type(B)}], Body, Type(A + B)}.
builtin_bytes_split(A, B) ->
Type = fun(N) when N =< 32 -> word; (_) -> pointer end,
MkBytes = fun([W]) -> W;
(Ws) -> {tuple, Ws} end,
Word = fun(I, Max) ->
bytes_slice(I, min(32, Max - I), A + B, ?V(c))
end,
Body =
case {A, B} of
{0, _} -> [?I(0), ?V(c)];
{_, 0} -> [?V(c), ?I(0)];
_ -> [MkBytes([ Word(I, A) || I <- lists:seq(0, A - 1, 32) ]),
MkBytes([ Word(I, A + B) || I <- lists:seq(A, A + B - 1, 32) ])]
end,
{[{"c", Type(A + B)}], {tuple, Body}, {tuple, [Type(A), Type(B)]}}.
bytes_to_raw_string(N, Term) when N =< 32 ->
{tuple, [?I(N), Term]};
bytes_to_raw_string(N, Term) when N > 32 ->
Elem = fun(I) -> #binop{op = '!', left = ?I(32 * I), right = ?V(bin)}
end,
Words = (N + 31) div 32,
?LET(bin, Term, {tuple, [?I(N) | [Elem(I) || I <- lists:seq(0, Words - 1)]]}).

View File

@ -44,36 +44,15 @@ format({invalid_entrypoint, Why, Ann, {id, _, Name}, Thing}) ->
polymorphic -> mk_err(pos(Ann), Msg, "Use the FATE backend if you want polymorphic entrypoints.\n");
higher_order -> mk_err(pos(Ann), Msg)
end;
format({cant_compare_type_aevm, Ann, Op, Type}) ->
StringAndTuple = [ "\n- type string"
"\n- tuple or record of word type" || lists:member(Op, ['==', '!=']) ],
Msg = io_lib:format("Cannot compare values of type\n"
"~s\n"
"The AEVM only supports '~s' on values of\n"
"- word type (int, bool, bits, address, oracle(_, _), etc)"
"~s",
[pp_type(2, Type), Op, StringAndTuple]),
Cxt = "Use FATE if you need to compare arbitrary types.",
mk_err(pos(Ann), Msg, Cxt);
format({invalid_aens_resolve_type, Ann, T}) ->
Msg = io_lib:format("Invalid return type of AENS.resolve:\n"
"~s\n"
"It must be a string or a pubkey type (address, oracle, etc).",
[pp_type(2, T)]),
mk_err(pos(Ann), Msg);
format({unapplied_contract_call, Contract}) ->
Msg = io_lib:format("The AEVM does not support unapplied contract call to\n"
"~s", [pp_expr(2, Contract)]),
Cxt = "Use FATE if you need this.",
mk_err(pos(Contract), Msg, Cxt);
format({unapplied_builtin, Id}) ->
Msg = io_lib:format("The AEVM does not support unapplied use of ~s.", [pp_expr(0, Id)]),
Cxt = "Use FATE if you need this.",
mk_err(pos(Id), Msg, Cxt);
format({invalid_map_key_type, Why, Ann, Type}) ->
Msg = io_lib:format("Invalid map key type\n~s", [pp_type(2, Type)]),
Cxt = case Why of
polymorphic -> "Map keys cannot be polymorphic in the AEVM. Use FATE if you need this.";
function -> "Map keys cannot be higher-order."
end,
mk_err(pos(Ann), Msg, Cxt);
@ -83,10 +62,6 @@ format({invalid_oracle_type, Why, What, Ann, Type}) ->
Msg = io_lib:format("Invalid oracle type\n~s", [pp_type(2, Type)]),
Cxt = io_lib:format("The ~s type must not be ~s.", [What, WhyS]),
mk_err(pos(Ann), Msg, Cxt);
format({higher_order_state, {type_def, Ann, _, _, State}}) ->
Msg = io_lib:format("Invalid state type\n~s", [pp_type(2, State)]),
Cxt = "The state cannot contain functions in the AEVM. Use FATE if you need this.",
mk_err(pos(Ann), Msg, Cxt);
format({var_args_not_set, Expr}) ->
mk_err( pos(Expr), "Could not deduce type of variable arguments list"
, "When compiling " ++ pp_expr(Expr)

View File

@ -2,7 +2,7 @@
%%% @author Happi (Erik Stenman)
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Compiler from Aeterinty Sophia language to the Aeternity VM, aevm.
%%% Compiler from Aeterinty Sophia language to FATE.
%%% @end
%%% Created : 12 Dec 2017
%%%-------------------------------------------------------------------
@ -12,14 +12,13 @@
, file/2
, from_string/2
, check_call/4
, create_calldata/3 %% deprecated
, create_calldata/3
, create_calldata/4
, version/0
, numeric_version/0
, sophia_type_to_typerep/1
, to_sophia_value/4 %% deprecated, need a backend
, to_sophia_value/4
, to_sophia_value/5
, decode_calldata/3 %% deprecated
, decode_calldata/3
, decode_calldata/4
, parse/2
, add_include_path/2
@ -27,7 +26,6 @@
]).
-include_lib("aebytecode/include/aeb_opcodes.hrl").
-include("aeso_icode.hrl").
-include("aeso_utils.hrl").
@ -35,13 +33,11 @@
| pp_ast
| pp_types
| pp_typed_ast
| pp_icode
| pp_assembler
| pp_bytecode
| no_code
| keep_included
| debug_mode
| {backend, aevm | fate}
| {include, {file_system, [string()]} |
{explicit_files, #{string() => binary()}}}
| {src_file, string()}
@ -106,45 +102,22 @@ add_include_path(File, Options) ->
end.
-spec from_string(binary() | string(), options()) -> {ok, map()} | {error, [aeso_errors:error()]}.
from_string(Contract, Options) ->
from_string(proplists:get_value(backend, Options, aevm), Contract, Options).
from_string(Backend, ContractBin, Options) when is_binary(ContractBin) ->
from_string(Backend, binary_to_list(ContractBin), Options);
from_string(Backend, ContractString, Options) ->
from_string(ContractBin, Options) when is_binary(ContractBin) ->
from_string(binary_to_list(ContractBin), Options);
from_string(ContractString, Options) ->
try
from_string1(Backend, ContractString, Options)
from_string1(ContractString, Options)
catch
throw:{error, Errors} -> {error, Errors}
end.
from_string1(aevm, ContractString, Options) ->
#{ icode := Icode
, folded_typed_ast := FoldedTypedAst
, warnings := Warnings } = string_to_code(ContractString, Options),
TypeInfo = extract_type_info(Icode),
Assembler = assemble(Icode, Options),
pp_assembler(aevm, Assembler, Options),
ByteCodeList = to_bytecode(Assembler, Options),
ByteCode = << << B:8 >> || B <- ByteCodeList >>,
pp_bytecode(ByteCode, Options),
{ok, Version} = version(),
Res = #{byte_code => ByteCode,
compiler_version => Version,
contract_source => ContractString,
type_info => TypeInfo,
abi_version => aeb_aevm_abi:abi_version(),
payable => maps:get(payable, Icode),
warnings => Warnings
},
{ok, maybe_generate_aci(Res, FoldedTypedAst, Options)};
from_string1(fate, ContractString, Options) ->
from_string1(ContractString, Options) ->
#{ fcode := FCode
, fcode_env := #{child_con_env := ChildContracts}
, folded_typed_ast := FoldedTypedAst
, warnings := Warnings } = string_to_code(ContractString, Options),
FateCode = aeso_fcode_to_fate:compile(ChildContracts, FCode, Options),
pp_assembler(fate, FateCode, Options),
pp_assembler(FateCode, Options),
ByteCode = aeb_fate_code:serialize(FateCode, []),
{ok, Version} = version(),
Res = #{byte_code => ByteCode,
@ -174,17 +147,6 @@ string_to_code(ContractString, Options) ->
pp_ast(Ast, Options),
{TypeEnv, FoldedTypedAst, UnfoldedTypedAst, Warnings} = aeso_ast_infer_types:infer(Ast, [return_env | Options]),
pp_typed_ast(UnfoldedTypedAst, Options),
case proplists:get_value(backend, Options, aevm) of
aevm ->
Icode = ast_to_icode(UnfoldedTypedAst, Options),
pp_icode(Icode, Options),
#{ icode => Icode
, unfolded_typed_ast => UnfoldedTypedAst
, folded_typed_ast => FoldedTypedAst
, type_env => TypeEnv
, ast => Ast
, warnings => Warnings};
fate ->
{Env, Fcode} = aeso_ast_to_fcode:ast_to_fcode(UnfoldedTypedAst, [{original_src, ContractString}|Options]),
#{ fcode => Fcode
, fcode_env => Env
@ -192,11 +154,9 @@ string_to_code(ContractString, Options) ->
, folded_typed_ast => FoldedTypedAst
, type_env => TypeEnv
, ast => Ast
, warnings => Warnings }
end.
, warnings => Warnings }.
-define(CALL_NAME, "__call").
-define(DECODE_NAME, "__decode").
%% Takes a string containing a contract with a declaration/prototype of a
%% function (foo, say) and adds function __call() = foo(args) calling this
@ -204,10 +164,8 @@ string_to_code(ContractString, Options) ->
%% terms for the arguments.
%% NOTE: Special treatment for "init" since it might be implicit and has
%% a special return type (typerep, T)
-spec check_call(string(), string(), [string()], options()) -> {ok, string(), {[Type], Type}, [term()]}
| {ok, string(), [term()]}
| {error, [aeso_errors:error()]}
when Type :: term().
-spec check_call(string(), string(), [string()], options()) -> {ok, string(), [term()]}
| {error, [aeso_errors:error()]}.
check_call(Source, "init" = FunName, Args, Options) ->
case check_call1(Source, FunName, Args, Options) of
Err = {error, _} when Args == [] ->
@ -224,34 +182,10 @@ check_call(Source, FunName, Args, Options) ->
check_call1(ContractString0, FunName, Args, Options) ->
try
case proplists:get_value(backend, Options, aevm) of
aevm ->
%% First check the contract without the __call function
#{ast := Ast} = string_to_code(ContractString0, Options),
ContractString = insert_call_function(Ast, ContractString0, ?CALL_NAME, FunName, Args),
#{unfolded_typed_ast := TypedAst,
icode := Icode} = string_to_code(ContractString, Options),
{ok, {FunName, {fun_t, _, _, ArgTypes, RetType}}} = get_call_type(TypedAst),
ArgVMTypes = [ aeso_ast_to_icode:ast_typerep(T, Icode) || T <- ArgTypes ],
RetVMType = case RetType of
{id, _, "_"} -> any;
_ -> aeso_ast_to_icode:ast_typerep(RetType, Icode)
end,
#{ functions := Funs } = Icode,
ArgIcode = get_arg_icode(Funs),
ArgTerms = [ icode_to_term(T, Arg) ||
{T, Arg} <- lists:zip(ArgVMTypes, ArgIcode) ],
RetVMType1 =
case FunName of
"init" -> {tuple, [typerep, RetVMType]};
_ -> RetVMType
end,
{ok, FunName, {ArgVMTypes, RetVMType1}, ArgTerms};
fate ->
%% First check the contract without the __call function
#{ fcode := OrgFcode
#{fcode := OrgFcode
, fcode_env := #{child_con_env := ChildContracts}
, ast := Ast } = string_to_code(ContractString0, Options),
, ast := Ast} = string_to_code(ContractString0, Options),
FateCode = aeso_fcode_to_fate:compile(ChildContracts, OrgFcode, []),
%% collect all hashes and compute the first name without hash collision to
SymbolHashes = maps:keys(aeb_fate_code:symbols(FateCode)),
@ -260,8 +194,8 @@ check_call1(ContractString0, FunName, Args, Options) ->
ContractString = insert_call_function(Ast, ContractString0, CallName, FunName, Args),
#{fcode := Fcode} = string_to_code(ContractString, Options),
CallArgs = arguments_of_body(CallName, FunName, Fcode),
{ok, FunName, CallArgs}
end
catch
throw:{error, Errors} -> {error, Errors}
end.
@ -309,32 +243,20 @@ last_contract_indent(Decls) ->
_ -> 0
end.
-spec to_sophia_value(string(), string(), ok | error | revert, aeb_aevm_data:data()) ->
-spec to_sophia_value(string(), string(), ok | error | revert, binary()) ->
{ok, aeso_syntax:expr()} | {error, [aeso_errors:error()]}.
to_sophia_value(ContractString, Fun, ResType, Data) ->
to_sophia_value(ContractString, Fun, ResType, Data, [{backend, aevm}]).
to_sophia_value(ContractString, Fun, ResType, Data, []).
-spec to_sophia_value(string(), string(), ok | error | revert, binary(), options()) ->
{ok, aeso_syntax:expr()} | {error, [aeso_errors:error()]}.
to_sophia_value(_, _, error, Err, _Options) ->
{ok, {app, [], {id, [], "error"}, [{string, [], Err}]}};
to_sophia_value(_, _, revert, Data, Options) ->
case proplists:get_value(backend, Options, aevm) of
aevm ->
case aeb_heap:from_binary(string, Data) of
{ok, Err} ->
{ok, {app, [], {id, [], "abort"}, [{string, [], Err}]}};
{error, _} ->
Msg = "Could not interpret the revert message",
{error, [aeso_errors:new(data_error, Msg)]}
end;
fate ->
to_sophia_value(_, _, revert, Data, _Options) ->
try aeb_fate_encoding:deserialize(Data) of
Err -> {ok, {app, [], {id, [], "abort"}, [{string, [], Err}]}}
catch _:_ ->
Msg = "Could not deserialize the revert message",
{error, [aeso_errors:new(data_error, Msg)]}
end
end;
to_sophia_value(ContractString, FunName, ok, Data, Options0) ->
Options = [no_code | Options0],
@ -344,25 +266,6 @@ to_sophia_value(ContractString, FunName, ok, Data, Options0) ->
{ok, _, Type0} = get_decode_type(FunName, TypedAst),
Type = aeso_ast_infer_types:unfold_types_in_type(TypeEnv, Type0, [unfold_record_types, unfold_variant_types]),
case proplists:get_value(backend, Options, aevm) of
aevm ->
Icode = maps:get(icode, Code),
VmType = aeso_ast_to_icode:ast_typerep(Type, Icode),
case aeb_heap:from_binary(VmType, Data) of
{ok, VmValue} ->
try
{ok, aeso_vm_decode:from_aevm(VmType, Type, VmValue)}
catch throw:cannot_translate_to_sophia ->
Type0Str = prettypr:format(aeso_pretty:type(Type0)),
Msg = io_lib:format("Cannot translate VM value ~p\n of type ~p\n to Sophia type ~s",
[Data, VmType, Type0Str]),
{error, [aeso_errors:new(data_error, Msg)]}
end;
{error, _Err} ->
Msg = io_lib:format("Failed to decode binary as type ~p", [VmType]),
{error, [aeso_errors:new(data_error, Msg)]}
end;
fate ->
try
{ok, aeso_vm_decode:from_fate(Type, aeb_fate_encoding:deserialize(Data))}
catch throw:cannot_translate_to_sophia ->
@ -375,43 +278,32 @@ to_sophia_value(ContractString, FunName, ok, Data, Options0) ->
Msg = io_lib:format("Failed to decode binary as type ~s", [Type1]),
{error, [aeso_errors:new(data_error, Msg)]}
end
end
catch
throw:{error, Errors} -> {error, Errors}
end.
-spec create_calldata(string(), string(), [string()]) ->
{ok, binary(), aeb_aevm_data:type(), aeb_aevm_data:type()}
| {error, [aeso_errors:error()]}.
{ok, binary()} | {error, [aeso_errors:error()]}.
create_calldata(Code, Fun, Args) ->
create_calldata(Code, Fun, Args, [{backend, aevm}]).
create_calldata(Code, Fun, Args, []).
-spec create_calldata(string(), string(), [string()], [{atom(), any()}]) ->
{ok, binary()} | {error, [aeso_errors:error()]}.
create_calldata(Code, Fun, Args, Options0) ->
Options = [no_code | Options0],
case proplists:get_value(backend, Options, aevm) of
aevm ->
case check_call(Code, Fun, Args, Options) of
{ok, FunName, {ArgTypes, RetType}, VMArgs} ->
aeb_aevm_abi:create_calldata(FunName, VMArgs, ArgTypes, RetType);
{error, _} = Err -> Err
end;
fate ->
case check_call(Code, Fun, Args, Options) of
{ok, FunName, FateArgs} ->
aeb_fate_abi:create_calldata(FunName, FateArgs);
{error, _} = Err -> Err
end
end.
-spec decode_calldata(string(), string(), binary()) ->
{ok, [aeso_syntax:type()], [aeso_syntax:expr()]}
| {error, [aeso_errors:error()]}.
decode_calldata(ContractString, FunName, Calldata) ->
decode_calldata(ContractString, FunName, Calldata, [{backend, aevm}]).
decode_calldata(ContractString, FunName, Calldata, []).
-spec decode_calldata(string(), string(), binary(), options()) ->
{ok, [aeso_syntax:type()], [aeso_syntax:expr()]}
| {error, [aeso_errors:error()]}.
decode_calldata(ContractString, FunName, Calldata, Options0) ->
Options = [no_code | Options0],
try
@ -424,27 +316,6 @@ decode_calldata(ContractString, FunName, Calldata, Options0) ->
Type0 = {tuple_t, [], ArgTypes},
%% user defined data types such as variants needed to match against
Type = aeso_ast_infer_types:unfold_types_in_type(TypeEnv, Type0, [unfold_record_types, unfold_variant_types]),
case proplists:get_value(backend, Options, aevm) of
aevm ->
Icode = maps:get(icode, Code),
VmType = aeso_ast_to_icode:ast_typerep(Type, Icode),
case aeb_heap:from_binary({tuple, [word, VmType]}, Calldata) of
{ok, {_, VmValue}} ->
try
{tuple, [], Values} = aeso_vm_decode:from_aevm(VmType, Type, VmValue),
%% Values are Sophia expressions in AST format
{ok, ArgTypes, Values}
catch throw:cannot_translate_to_sophia ->
Type0Str = prettypr:format(aeso_pretty:type(Type0)),
Msg = io_lib:format("Cannot translate VM value ~p\n of type ~p\n to Sophia type ~s",
[VmValue, VmType, Type0Str]),
{error, [aeso_errors:new(data_error, Msg)]}
end;
{error, _Err} ->
Msg = io_lib:format("Failed to decode calldata as type ~p", [VmType]),
{error, [aeso_errors:new(data_error, Msg)]}
end;
fate ->
case aeb_fate_abi:decode_calldata(FunName, Calldata) of
{ok, FateArgs} ->
try
@ -462,35 +333,10 @@ decode_calldata(ContractString, FunName, Calldata, Options0) ->
Msg = io_lib:format("Failed to decode calldata binary", []),
{error, [aeso_errors:new(data_error, Msg)]}
end
end
catch
throw:{error, Errors} -> {error, Errors}
end.
get_arg_icode(Funs) ->
case [ Args || {[_, ?CALL_NAME], _, _, {funcall, _, Args}, _} <- Funs ] of
[Args] -> Args;
[] -> error_missing_call_function()
end.
-dialyzer({nowarn_function, error_missing_call_function/0}).
error_missing_call_function() ->
Msg = "Internal error: missing '__call'-function",
aeso_errors:throw(aeso_errors:new(internal_error, Msg)).
get_call_type([{Contract, _, _, Defs}]) when ?IS_CONTRACT_HEAD(Contract) ->
case [ {lists:last(QFunName), FunType}
|| {letfun, _, {id, _, ?CALL_NAME}, [], _Ret,
[{guarded, _, [], {typed, _,
{app, _,
{typed, _, {qid, _, QFunName}, FunType}, _}, _}}]} <- Defs ] of
[Call] -> {ok, Call};
[] -> error_missing_call_function()
end;
get_call_type([_ | Contracts]) ->
%% The __call should be in the final contract
get_call_type(Contracts).
-dialyzer({nowarn_function, get_decode_type/2}).
get_decode_type(FunName, [{Contract, Ann, _, Defs}]) when ?IS_CONTRACT_HEAD(Contract) ->
GetType = fun({letfun, _, {id, _, Name}, Args, Ret, _}) when Name == FunName -> [{Args, Ret}];
@ -511,87 +357,17 @@ get_decode_type(FunName, [_ | Contracts]) ->
%% The __decode should be in the final contract
get_decode_type(FunName, Contracts).
%% Translate an icode value (error if not value) to an Erlang term that can be
%% consumed by aeb_heap:to_binary().
icode_to_term(word, {integer, N}) -> N;
icode_to_term(word, {unop, '-', {integer, N}}) -> -N;
icode_to_term(string, {tuple, [{integer, Len} | Words]}) ->
<<Str:Len/binary, _/binary>> = << <<W:256>> || {integer, W} <- Words >>,
Str;
icode_to_term({list, T}, {list, Vs}) ->
[ icode_to_term(T, V) || V <- Vs ];
icode_to_term({tuple, Ts}, {tuple, Vs}) ->
list_to_tuple(icodes_to_terms(Ts, Vs));
icode_to_term({variant, Cs}, {tuple, [{integer, Tag} | Args]}) ->
Ts = lists:nth(Tag + 1, Cs),
{variant, Tag, icodes_to_terms(Ts, Args)};
icode_to_term(T = {map, KT, VT}, M) ->
%% Maps are compiled to builtin and primop calls, so this gets a little hairy
case M of
{funcall, {var_ref, {builtin, map_put}}, [M1, K, V]} ->
Map = icode_to_term(T, M1),
Key = icode_to_term(KT, K),
Val = icode_to_term(VT, V),
Map#{ Key => Val };
#prim_call_contract{ address = {integer, 0},
arg = {tuple, [{integer, ?PRIM_CALL_MAP_EMPTY}, _, _]} } ->
#{};
_ -> throw({todo, M})
end;
icode_to_term(word, {unop, 'bnot', A}) ->
bnot icode_to_term(word, A);
icode_to_term(word, {binop, 'bor', A, B}) ->
icode_to_term(word, A) bor icode_to_term(word, B);
icode_to_term(word, {binop, 'bsl', A, B}) ->
icode_to_term(word, B) bsl icode_to_term(word, A);
icode_to_term(word, {binop, 'band', A, B}) ->
icode_to_term(word, A) band icode_to_term(word, B);
icode_to_term(typerep, _) ->
throw({todo, typerep});
icode_to_term(T, V) ->
throw({not_a_value, T, V}).
icodes_to_terms(Ts, Vs) ->
[ icode_to_term(T, V) || {T, V} <- lists:zip(Ts, Vs) ].
ast_to_icode(TypedAst, Options) ->
aeso_ast_to_icode:convert_typed(TypedAst, Options).
assemble(Icode, Options) ->
aeso_icode_to_asm:convert(Icode, Options).
to_bytecode(['COMMENT',_|Rest],_Options) ->
to_bytecode(Rest,_Options);
to_bytecode([Op|Rest], Options) ->
[aeb_opcodes:m_to_op(Op)|to_bytecode(Rest, Options)];
to_bytecode([], _) -> [].
extract_type_info(#{functions := Functions} =_Icode) ->
ArgTypesOnly = fun(As) -> [ T || {_, T} <- As ] end,
Payable = fun(Attrs) -> proplists:get_value(payable, Attrs, false) end,
TypeInfo = [aeb_aevm_abi:function_type_info(list_to_binary(lists:last(Name)),
Payable(Attrs), ArgTypesOnly(Args), TypeRep)
|| {Name, Attrs, Args,_Body, TypeRep} <- Functions,
not is_tuple(Name),
not lists:member(private, Attrs)
],
lists:sort(TypeInfo).
pp_sophia_code(C, Opts)-> pp(C, Opts, pp_sophia_code, fun(Code) ->
io:format("~s\n", [prettypr:format(aeso_pretty:decls(Code))])
end).
pp_ast(C, Opts) -> pp(C, Opts, pp_ast, fun aeso_ast:pp/1).
pp_typed_ast(C, Opts)-> pp(C, Opts, pp_typed_ast, fun aeso_ast:pp_typed/1).
pp_icode(C, Opts) -> pp(C, Opts, pp_icode, fun aeso_icode:pp/1).
pp_bytecode(C, Opts) -> pp(C, Opts, pp_bytecode, fun aeb_disassemble:pp/1).
pp_assembler(aevm, C, Opts) -> pp(C, Opts, pp_assembler, fun aeb_asm:pp/1);
pp_assembler(fate, C, Opts) -> pp(C, Opts, pp_assembler, fun(Asm) -> io:format("~s", [aeb_fate_asm:pp(Asm)]) end).
pp_assembler(C, Opts) -> pp(C, Opts, pp_assembler, fun(Asm) -> io:format("~s", [aeb_fate_asm:pp(Asm)]) end).
pp(Code, Options, Option, PPFun) ->
case proplists:lookup(Option, Options) of
{Option, true} ->
{Option1, true} when Option1 =:= Option ->
PPFun(Code);
none ->
ok
@ -604,16 +380,13 @@ pp(Code, Options, Option, PPFun) ->
-spec validate_byte_code(map(), string(), options()) -> ok | {error, [aeso_errors:error()]}.
validate_byte_code(#{ byte_code := ByteCode, payable := Payable }, Source, Options) ->
Fail = fun(Err) -> {error, [aeso_errors:new(data_error, Err)]} end,
case proplists:get_value(backend, Options, aevm) of
B when B /= fate -> Fail(io_lib:format("Unsupported backend: ~s\n", [B]));
fate ->
try
FCode1 = ?protect(deserialize, aeb_fate_code:strip_init_function(aeb_fate_code:deserialize(ByteCode))),
{FCode2, SrcPayable} =
?protect(compile,
begin
{ok, #{ byte_code := SrcByteCode, payable := SrcPayable }} =
from_string1(fate, Source, Options),
from_string1(Source, Options),
FCode = aeb_fate_code:deserialize(SrcByteCode),
{aeb_fate_code:strip_init_function(FCode), SrcPayable}
end),
@ -628,7 +401,6 @@ validate_byte_code(#{ byte_code := ByteCode, payable := Payable }, Source, Optio
catch
throw:{deserialize, _} -> Fail("Invalid byte code");
throw:{compile, {error, Errs}} -> {error, Errs}
end
end.
compare_fate_code(FCode1, FCode2) ->
@ -680,14 +452,6 @@ pp_fate_type(T) -> io_lib:format("~w", [T]).
%% -------------------------------------------------------------------
-spec sophia_type_to_typerep(string()) -> {error, bad_type} | {ok, aeb_aevm_data:type()}.
sophia_type_to_typerep(String) ->
Ast = aeso_parser:run_parser(aeso_parser:type(), String),
try aeso_ast_to_icode:ast_typerep(Ast) of
Type -> {ok, Type}
catch _:_ -> {error, bad_type}
end.
-spec parse(string(), aeso_compiler:options()) -> none() | aeso_syntax:ast().
parse(Text, Options) ->
parse(Text, sets:new(), Options).

View File

@ -9,7 +9,7 @@
%%%-------------------------------------------------------------------
-module(aeso_fcode_to_fate).
-export([compile/2, compile/3, term_to_fate/1, term_to_fate/2]).
-export([compile/2, compile/3, term_to_fate/1, term_to_fate/2, type_to_scode/1]).
-ifdef(TEST).
-export([optimize_fun/4, to_basic_blocks/1]).

View File

@ -1,153 +0,0 @@
%%%-------------------------------------------------------------------
%%% @author Happi (Erik Stenman)
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Intermediate Code for Aeterinty Sophia language.
%%% @end
%%% Created : 21 Dec 2017
%%%
%%%-------------------------------------------------------------------
-module(aeso_icode).
-export([new/1,
pp/1,
set_name/2,
set_namespace/2,
set_payable/2,
enter_namespace/2,
get_namespace/1,
in_main_contract/1,
qualify/2,
set_functions/2,
map_typerep/2,
option_typerep/1,
get_constructor_tag/2]).
-export_type([icode/0]).
-include("aeso_icode.hrl").
-type type_def() :: fun(([aeb_aevm_data:type()]) -> aeb_aevm_data:type()).
-type bindings() :: any().
-type fun_dec() :: { string()
, [modifier()]
, arg_list()
, expr()
, aeb_aevm_data:type()}.
-type modifier() :: private | stateful.
-type type_name() :: string() | [string()].
-type icode() :: #{ contract_name => string()
, functions => [fun_dec()]
, namespace => aeso_syntax:con() | aeso_syntax:qcon()
, env => [bindings()]
, state_type => aeb_aevm_data:type()
, event_type => aeb_aevm_data:type()
, types => #{ type_name() => type_def() }
, type_vars => #{ string() => aeb_aevm_data:type() }
, constructors => #{ [string()] => integer() } %% name to tag
, options => [any()]
, payable => boolean()
}.
pp(Icode) ->
%% TODO: Actually do *Pretty* printing.
io:format("~p~n", [Icode]).
-spec new([any()]) -> icode().
new(Options) ->
#{ contract_name => ""
, functions => []
, env => new_env()
%% Default to unit type for state and event
, state_type => {tuple, []}
, event_type => {tuple, []}
, types => builtin_types()
, type_vars => #{}
, constructors => builtin_constructors()
, options => Options
, payable => false }.
builtin_types() ->
Word = fun([]) -> word end,
#{ "bool" => Word
, "int" => Word
, "char" => Word
, "bits" => Word
, "string" => fun([]) -> string end
, "address" => Word
, "hash" => Word
, "unit" => fun([]) -> {tuple, []} end
, "signature" => fun([]) -> {tuple, [word, word]} end
, "oracle" => fun([_, _]) -> word end
, "oracle_query" => fun([_, _]) -> word end
, "list" => fun([A]) -> {list, A} end
, "option" => fun([A]) -> {variant, [[], [A]]} end
, "map" => fun([K, V]) -> map_typerep(K, V) end
, ["Chain", "ttl"] => fun([]) -> {variant, [[word], [word]]} end
, ["AENS", "pointee"] => fun([]) -> {variant, [[word], [word], [word]]} end
}.
builtin_constructors() ->
#{ ["RelativeTTL"] => 0
, ["FixedTTL"] => 1
, ["None"] => 0
, ["Some"] => 1
, ["AccountPointee"] => 0
, ["OraclePointee"] => 1
, ["ContractPointee"] => 2
}.
map_typerep(K, V) ->
{map, K, V}.
option_typerep(A) ->
{variant, [[], [A]]}.
new_env() ->
[].
-spec set_name(string(), icode()) -> icode().
set_name(Name, Icode) ->
maps:put(contract_name, Name, Icode).
-spec set_payable(boolean(), icode()) -> icode().
set_payable(Payable, Icode) ->
maps:put(payable, Payable, Icode).
-spec set_namespace(aeso_syntax:con() | aeso_syntax:qcon(), icode()) -> icode().
set_namespace(NS, Icode) -> Icode#{ namespace => NS }.
-spec enter_namespace(aeso_syntax:con(), icode()) -> icode().
enter_namespace(NS, Icode = #{ namespace := NS1 }) ->
Icode#{ namespace => aeso_syntax:qualify(NS1, NS) };
enter_namespace(NS, Icode) ->
Icode#{ namespace => NS }.
-spec in_main_contract(icode()) -> boolean().
in_main_contract(#{ namespace := {con, _, Main}, contract_name := Main }) -> true;
in_main_contract(_Icode) -> false.
-spec get_namespace(icode()) -> false | aeso_syntax:con() | aeso_syntax:qcon().
get_namespace(Icode) -> maps:get(namespace, Icode, false).
-spec qualify(aeso_syntax:id() | aeso_syntax:con(), icode()) -> aeso_syntax:id() | aeso_syntax:qid() | aeso_syntax:con() | aeso_syntax:qcon().
qualify(X, Icode) ->
case get_namespace(Icode) of
false -> X;
NS -> aeso_syntax:qualify(NS, X)
end.
-spec set_functions([fun_dec()], icode()) -> icode().
set_functions(NewFuns, Icode) ->
maps:put(functions, NewFuns, Icode).
-spec get_constructor_tag([string()], icode()) -> integer().
get_constructor_tag(Name, #{constructors := Constructors}) ->
case maps:get(Name, Constructors, undefined) of
undefined -> error({undefined_constructor, Name});
Tag -> Tag
end.

View File

@ -1,59 +0,0 @@
-include_lib("aebytecode/include/aeb_typerep_def.hrl").
-record(arg, {name::string(), type::?Type()}).
-type expr() :: term().
-type arg() :: #arg{name::string(), type::?Type()}.
-type arg_list() :: [arg()].
-record(fun_dec, { name :: string()
, args :: arg_list()
, body :: expr()}).
-record(var_ref, { name :: string() | list(string()) | {builtin, atom() | tuple()}}).
-record(prim_call_contract,
{ gas :: expr()
, address :: expr()
, value :: expr()
, arg :: expr()
, type_hash:: expr()
}).
-record(prim_balance, { address :: expr() }).
-record(prim_block_hash, { height :: expr() }).
-record(prim_put, { state :: expr() }).
-record(integer, {value :: integer()}).
-record(tuple, {cpts :: [expr()]}).
-record(list, {elems :: [expr()]}).
-record(unop, { op :: term()
, rand :: expr()}).
-record(binop, { op :: term()
, left :: expr()
, right :: expr()}).
-record(ifte, { decision :: expr()
, then :: expr()
, else :: expr()}).
-record(switch, { expr :: expr()
, cases :: [{expr(),expr()}]}).
-record(funcall, { function :: expr()
, args :: [expr()]}).
-record(lambda, { args :: arg_list(),
body :: expr()}).
-record(missing_field, { format :: string()
, args :: [term()]}).
-record(seq, {exprs :: [expr()]}).
-record(event, {topics :: [expr()], payload :: expr()}).

View File

@ -1,983 +0,0 @@
%%%-------------------------------------------------------------------
%%% @author Happi (Erik Stenman)
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Translator from Aesophia Icode to Aevm Assebly
%%% @end
%%% Created : 21 Dec 2017
%%%
%%%-------------------------------------------------------------------
-module(aeso_icode_to_asm).
-export([convert/2]).
-include_lib("aebytecode/include/aeb_opcodes.hrl").
-include("aeso_icode.hrl").
i(Code) -> aeb_opcodes:mnemonic(Code).
%% We don't track purity or statefulness in the type checker yet.
is_stateful({FName, _, _, _, _}) -> lists:last(FName) /= "init".
is_public({_Name, Attrs, _Args, _Body, _Type}) -> not lists:member(private, Attrs).
convert(#{ contract_name := _ContractName
, state_type := StateType
, functions := Functions
},
_Options) ->
%% Create a function dispatcher
DispatchFun = {"%main", [], [{"arg", "_"}],
{switch, {var_ref, "arg"},
[{{tuple, [fun_hash(Fun),
{tuple, make_args(Args)}]},
icode_seq([ hack_return_address(Fun, length(Args) + 1) ] ++
[ {funcall, {var_ref, FName}, make_args(Args)}]
)}
|| Fun={FName, _, Args, _,_TypeRep} <- Functions, is_public(Fun) ]},
word},
NewFunctions = Functions ++ [DispatchFun],
%% Create a function environment
Funs = [{Name, length(Args), make_ref()}
|| {Name, _Attrs, Args, _Body, _Type} <- NewFunctions],
%% Create dummy code to call the main function with one argument
%% taken from the stack
StopLabel = make_ref(),
StatefulStopLabel = make_ref(),
MainFunction = lookup_fun(Funs, "%main"),
StateTypeValue = aeso_ast_to_icode:type_value(StateType),
DispatchCode = [%% push two return addresses to stop, one for stateful
%% functions and one for non-stateful functions.
push_label(StatefulStopLabel),
push_label(StopLabel),
%% The calldata is already on the stack when we start. Put
%% it on top (also reorders StatefulStop and Stop).
swap(2),
jump(MainFunction),
jumpdest(StatefulStopLabel),
%% We need to encode the state type and put it
%% underneath the return value.
assemble_expr(Funs, [], nontail, StateTypeValue), %% StateT Ret
swap(1), %% Ret StateT
%% We should also change the state value at address 0 to a
%% pointer to the state value (to allow 0 to represent an
%% unchanged state).
i(?MSIZE), %% Ptr
push(0), i(?MLOAD), %% Val Ptr
i(?MSIZE), i(?MSTORE), %% Ptr Mem[Ptr] := Val
push(0), i(?MSTORE), %% Mem[0] := Ptr
%% The pointer to the return value is on top of
%% the stack, but the return instruction takes two
%% stack arguments.
push(0),
i(?RETURN),
jumpdest(StopLabel),
%% Set state pointer to 0 to indicate that we didn't change state
push(0), dup(1), i(?MSTORE),
%% Same as StatefulStopLabel above
push(0),
i(?RETURN)
],
%% Code is a deep list of instructions, containing labels and
%% references to them. Labels take the form {'JUMPDEST', Ref}, and
%% references take the form {push_label, Ref}, which is translated
%% into a PUSH instruction.
Code = [assemble_function(Funs, Name, Args, Body)
|| {Name, _, Args, Body, _Type} <- NewFunctions],
resolve_references(
[%% i(?COMMENT), "CONTRACT: " ++ ContractName,
DispatchCode,
Code]).
%% Generate error on correct format.
gen_error(Error) ->
error({code_errors, [Error]}).
make_args(Args) ->
[{var_ref, [I-1 + $a]} || I <- lists:seq(1, length(Args))].
fun_hash({FName, _, Args, _, TypeRep}) ->
ArgType = {tuple, [T || {_, T} <- Args]},
<<Hash:256>> = aeb_aevm_abi:function_type_hash(list_to_binary(lists:last(FName)), ArgType, TypeRep),
{integer, Hash}.
%% Expects two return addresses below N elements on the stack. Picks the top
%% one for stateful functions and the bottom one for non-stateful.
hack_return_address(Fun, N) ->
case is_stateful(Fun) of
true -> {inline_asm, [i(?MSIZE)]};
false ->
{inline_asm, %% X1 .. XN State NoState
[ dup(N + 2) %% NoState X1 .. XN State NoState
, swap(N + 1) %% State X1 .. XN NoState NoState
]} %% Top of the stack will be discarded.
end.
assemble_function(Funs, Name, Args, Body) ->
[jumpdest(lookup_fun(Funs, Name)),
assemble_expr(Funs, lists:reverse(Args), tail, Body),
%% swap return value and first argument
pop_args(length(Args)),
swap(1),
i(?JUMP)].
%% {seq, Es} - should be "one" operation in terms of stack content
%% i.e. after the `seq` there should be one new element on the stack.
assemble_expr(Funs, Stack, Tail, {seq, [E]}) ->
assemble_expr(Funs, Stack, Tail, E);
assemble_expr(Funs, Stack, Tail, {seq, [E | Es]}) ->
[assemble_expr(Funs, Stack, nontail, E),
assemble_expr(Funs, Stack, Tail, {seq, Es})];
assemble_expr(_Funs, _Stack, _Tail, {inline_asm, Code}) ->
Code; %% Unsafe! Code should take care to respect the stack!
assemble_expr(Funs, Stack, _TailPosition, {var_ref, Id}) ->
case lists:keymember(Id, 1, Stack) of
true ->
dup(lookup_var(Id, Stack));
false ->
%% Build a closure
%% When a top-level fun is called directly, we do not
%% reach this case.
Eta = make_ref(),
Continue = make_ref(),
[i(?MSIZE),
push_label(Eta),
dup(2),
i(?MSTORE),
jump(Continue),
%% the code of the closure
jumpdest(Eta),
%% pop the pointer to the function
pop(1),
jump(lookup_fun(Funs, Id)),
jumpdest(Continue)]
end;
assemble_expr(_, _, _, {missing_field, Format, Args}) ->
io:format(Format, Args),
gen_error(missing_field);
assemble_expr(_Funs, _Stack, _, {integer, N}) ->
push(N);
assemble_expr(Funs, Stack, _, {tuple, Cpts}) ->
%% We build tuples right-to-left, so that the first write to the
%% tuple extends the memory size. Because we use ?MSIZE as the
%% heap pointer, we must allocate the tuple AFTER computing the
%% first element.
%% We store elements into the tuple as soon as possible, to avoid
%% keeping them for a long time on the stack.
case lists:reverse(Cpts) of
[] ->
i(?MSIZE);
[Last|Rest] ->
[assemble_expr(Funs, Stack, nontail, Last),
%% allocate the tuple memory
i(?MSIZE),
%% compute address of last word
push(32 * (length(Cpts) - 1)), i(?ADD),
%% Stack: <last-value> <pointer>
%% Write value to memory (allocates the tuple)
swap(1), dup(2), i(?MSTORE),
%% Stack: pointer to last word written
[[%% Update pointer to next word to be written
push(32), swap(1), i(?SUB),
%% Compute element
assemble_expr(Funs, [pointer|Stack], nontail, A),
%% Write element to memory
dup(2), i(?MSTORE)]
%% And we leave a pointer to the last word written on
%% the stack
|| A <- Rest]]
%% The pointer to the entire tuple is on the stack
end;
assemble_expr(_Funs, _Stack, _, {list, []}) ->
%% Use Erik's value of -1 for []
[push(0), i(?NOT)];
assemble_expr(Funs, Stack, _, {list, [A|B]}) ->
assemble_expr(Funs, Stack, nontail, {tuple, [A, {list, B}]});
assemble_expr(Funs, Stack, _, {unop, '!', A}) ->
case A of
{binop, Logical, _, _} when Logical=='&&'; Logical=='||' ->
assemble_expr(Funs, Stack, nontail, {ifte, A, {integer, 0}, {integer, 1}});
_ ->
[assemble_expr(Funs, Stack, nontail, A),
i(?ISZERO)
]
end;
assemble_expr(Funs, Stack, _, {event, Topics, Payload}) ->
[assemble_exprs(Funs, Stack, Topics ++ [Payload]),
case length(Topics) of
0 -> i(?LOG0);
1 -> i(?LOG1);
2 -> i(?LOG2);
3 -> i(?LOG3);
4 -> i(?LOG4)
end, i(?MSIZE)];
assemble_expr(Funs, Stack, _, {unop, Op, A}) ->
[assemble_expr(Funs, Stack, nontail, A),
assemble_prefix(Op)];
assemble_expr(Funs, Stack, Tail, {binop, '&&', A, B}) ->
assemble_expr(Funs, Stack, Tail, {ifte, A, B, {integer, 0}});
assemble_expr(Funs, Stack, Tail, {binop, '||', A, B}) ->
assemble_expr(Funs, Stack, Tail, {ifte, A, {integer, 1}, B});
assemble_expr(Funs, Stack, Tail, {binop, '::', A, B}) ->
%% Take advantage of optimizations in tuple construction.
assemble_expr(Funs, Stack, Tail, {tuple, [A, B]});
assemble_expr(Funs, Stack, _, {binop, Op, A, B}) ->
%% EEVM binary instructions take their first argument from the top
%% of the stack, so to get operands on the stack in the right
%% order, we evaluate from right to left.
[assemble_expr(Funs, Stack, nontail, B),
assemble_expr(Funs, [dummy|Stack], nontail, A),
assemble_infix(Op)];
assemble_expr(Funs, Stack, _, {lambda, Args, Body}) ->
Function = make_ref(),
FunBody = make_ref(),
Continue = make_ref(),
NoMatch = make_ref(),
FreeVars = free_vars({lambda, Args, Body}),
{NewVars, MatchingCode} = assemble_pattern(FunBody, NoMatch, {tuple, [{var_ref, "_"}|FreeVars]}),
BodyCode = assemble_expr(Funs, NewVars ++ lists:reverse([ {Arg#arg.name, Arg#arg.type} || Arg <- Args ]), tail, Body),
[assemble_expr(Funs, Stack, nontail, {tuple, [{label, Function}|FreeVars]}),
jump(Continue), %% will be optimized away
jumpdest(Function),
%% A pointer to the closure is on the stack
MatchingCode,
jumpdest(FunBody),
BodyCode,
pop_args(length(Args)+length(NewVars)),
swap(1),
i(?JUMP),
jumpdest(NoMatch), %% dead code--raise an exception just in case
push(0),
i(?NOT),
i(?MLOAD),
i(?STOP),
jumpdest(Continue)];
assemble_expr(_, _, _, {label, Label}) ->
push_label(Label);
assemble_expr(Funs, Stack, nontail, {funcall, Fun, Args}) ->
Return = make_ref(),
%% This is the obvious code:
%% [{push_label, Return},
%% assemble_exprs(Funs, [return_address|Stack], Args++[Fun]),
%% 'JUMP',
%% {'JUMPDEST', Return}];
%% Its problem is that it stores the return address on the stack
%% while the arguments are computed, which is unnecessary. To
%% avoid that, we compute the last argument FIRST, and replace it
%% with the return address using a SWAP.
%%
%% assemble_function leaves the code pointer of the function to
%% call on top of the stack, and--if the function is not a
%% top-level name--a pointer to its tuple of free variables. In
%% either case a JUMP is the right way to call it.
case Args of
[] ->
[push_label(Return),
assemble_function(Funs, [return_address|Stack], Fun),
i(?JUMP),
jumpdest(Return)];
_ ->
{Init, [Last]} = lists:split(length(Args) - 1, Args),
[assemble_exprs(Funs, Stack, [Last|Init]),
%% Put the return address in the right place, which also
%% reorders the args correctly.
push_label(Return),
swap(length(Args)),
assemble_function(Funs, [dummy || _ <- Args] ++ [return_address|Stack], Fun),
i(?JUMP),
jumpdest(Return)]
end;
assemble_expr(Funs, Stack, tail, {funcall, Fun, Args}) ->
IsTopLevel = is_top_level_fun(Stack, Fun),
%% If the fun is not top-level, then it may refer to local
%% variables and must be computed before stack shuffling.
ArgsAndFun = Args++[Fun || not IsTopLevel],
ComputeArgsAndFun = assemble_exprs(Funs, Stack, ArgsAndFun),
%% Copy arguments back down the stack to the start of the frame
ShuffleSpec = lists:seq(length(ArgsAndFun), 1, -1) ++ [discard || _ <- Stack],
Shuffle = shuffle_stack(ShuffleSpec),
[ComputeArgsAndFun, Shuffle,
if IsTopLevel ->
%% still need to compute function
assemble_function(Funs, [], Fun);
true ->
%% need to unpack a closure
[dup(1), i(?MLOAD)]
end,
i(?JUMP)];
assemble_expr(Funs, Stack, Tail, {ifte, Decision, Then, Else}) ->
%% This compilation scheme introduces a lot of labels and
%% jumps. Unnecessary ones are removed later in
%% resolve_references.
Close = make_ref(),
ThenL = make_ref(),
ElseL = make_ref(),
[assemble_decision(Funs, Stack, Decision, ThenL, ElseL),
jumpdest(ElseL),
assemble_expr(Funs, Stack, Tail, Else),
jump(Close),
jumpdest(ThenL),
assemble_expr(Funs, Stack, Tail, Then),
jumpdest(Close)
];
assemble_expr(Funs, Stack, Tail, {switch, A, Cases}) ->
Close = make_ref(),
[assemble_expr(Funs, Stack, nontail, A),
assemble_cases(Funs, Stack, Tail, Close, Cases),
{'JUMPDEST', Close}];
%% State primitives
%% (A pointer to) the contract state is stored at address 0.
assemble_expr(_Funs, _Stack, _Tail, prim_state) ->
[push(0), i(?MLOAD)];
assemble_expr(Funs, Stack, _Tail, #prim_put{ state = State }) ->
[assemble_expr(Funs, Stack, nontail, State),
push(0), i(?MSTORE), %% We need something for the unit value on the stack,
i(?MSIZE)]; %% MSIZE is the cheapest instruction.
%% Environment primitives
assemble_expr(_Funs, _Stack, _Tail, prim_contract_address) ->
[i(?ADDRESS)];
assemble_expr(_Funs, _Stack, _Tail, prim_contract_creator) ->
[i(?CREATOR)];
assemble_expr(_Funs, _Stack, _Tail, prim_call_origin) ->
[i(?ORIGIN)];
assemble_expr(_Funs, _Stack, _Tail, prim_caller) ->
[i(?CALLER)];
assemble_expr(_Funs, _Stack, _Tail, prim_call_value) ->
[i(?CALLVALUE)];
assemble_expr(_Funs, _Stack, _Tail, prim_gas_price) ->
[i(?GASPRICE)];
assemble_expr(_Funs, _Stack, _Tail, prim_gas_left) ->
[i(?GAS)];
assemble_expr(_Funs, _Stack, _Tail, prim_coinbase) ->
[i(?COINBASE)];
assemble_expr(_Funs, _Stack, _Tail, prim_timestamp) ->
[i(?TIMESTAMP)];
assemble_expr(_Funs, _Stack, _Tail, prim_block_height) ->
[i(?NUMBER)];
assemble_expr(_Funs, _Stack, _Tail, prim_difficulty) ->
[i(?DIFFICULTY)];
assemble_expr(_Funs, _Stack, _Tail, prim_gas_limit) ->
[i(?GASLIMIT)];
assemble_expr(Funs, Stack, _Tail, #prim_balance{ address = Addr }) ->
[assemble_expr(Funs, Stack, nontail, Addr),
i(?BALANCE)];
assemble_expr(Funs, Stack, _Tail, #prim_block_hash{ height = Height }) ->
[assemble_expr(Funs, Stack, nontail, Height),
i(?BLOCKHASH)];
assemble_expr(Funs, Stack, _Tail,
#prim_call_contract{ gas = Gas
, address = To
, value = Value
, arg = Arg
, type_hash= TypeHash
}) ->
%% ?CALL takes (from the top)
%% Gas, To, Value, Arg, TypeHash, _OOffset,_OSize
%% So assemble these in reverse order.
[ assemble_exprs(Funs, Stack, [ {integer, 0}, {integer, 0}, TypeHash
, Arg, Value, To, Gas ])
, i(?CALL)
].
assemble_exprs(_Funs, _Stack, []) ->
[];
assemble_exprs(Funs, Stack, [E|Es]) ->
[assemble_expr(Funs, Stack, nontail, E),
assemble_exprs(Funs, [dummy|Stack], Es)].
assemble_decision(Funs, Stack, {binop, '&&', A, B}, Then, Else) ->
Label = make_ref(),
[assemble_decision(Funs, Stack, A, Label, Else),
jumpdest(Label),
assemble_decision(Funs, Stack, B, Then, Else)];
assemble_decision(Funs, Stack, {binop, '||', A, B}, Then, Else) ->
Label = make_ref(),
[assemble_decision(Funs, Stack, A, Then, Label),
jumpdest(Label),
assemble_decision(Funs, Stack, B, Then, Else)];
assemble_decision(Funs, Stack, {unop, '!', A}, Then, Else) ->
assemble_decision(Funs, Stack, A, Else, Then);
assemble_decision(Funs, Stack, {ifte, A, B, C}, Then, Else) ->
TrueL = make_ref(),
FalseL = make_ref(),
[assemble_decision(Funs, Stack, A, TrueL, FalseL),
jumpdest(TrueL), assemble_decision(Funs, Stack, B, Then, Else),
jumpdest(FalseL), assemble_decision(Funs, Stack, C, Then, Else)];
assemble_decision(Funs, Stack, Decision, Then, Else) ->
[assemble_expr(Funs, Stack, nontail, Decision),
jump_if(Then), jump(Else)].
%% Entered with value to switch on on top of the stack
%% Evaluate selected case, then jump to Close with result on the
%% stack.
assemble_cases(_Funs, _Stack, _Tail, _Close, []) ->
%% No match! What should be do? There's no real way to raise an
%% exception, except consuming all the gas.
%% There should not be enough gas to do this:
[push(1), i(?NOT),
i(?MLOAD),
%% now stop, so that jump optimizer realizes we will not fall
%% through this code.
i(?STOP)];
assemble_cases(Funs, Stack, Tail, Close, [{Pattern, Body}|Cases]) ->
Succeed = make_ref(),
Fail = make_ref(),
{NewVars, MatchingCode} =
assemble_pattern(Succeed, Fail, Pattern),
%% In the code that follows, if this is NOT the last case, then we
%% save the value being switched on, and discard it on
%% success. The code is simpler if this IS the last case.
[[dup(1) || Cases /= []], %% save value for next case, if there is one
MatchingCode,
jumpdest(Succeed),
%% Discard saved value, if we saved one
[case NewVars of
[] ->
pop(1);
[_] ->
%% Special case for peep-hole optimization
pop_args(1);
_ ->
[swap(length(NewVars)), pop(1)]
end
|| Cases/=[]],
assemble_expr(Funs,
case Cases of
[] -> NewVars;
_ -> reorder_vars(NewVars)
end
++Stack, Tail, Body),
%% If the Body makes a tail call, then we will not return
%% here--but it doesn't matter, because
%% (a) the NewVars will be popped before the tailcall
%% (b) the code below will be deleted since it is dead
pop_args(length(NewVars)),
jump(Close),
jumpdest(Fail),
assemble_cases(Funs, Stack, Tail, Close, Cases)].
%% Entered with value to match on top of the stack.
%% Generated code removes value, and
%% - jumps to Fail if no match, or
%% - binds variables, leaves them on the stack, and jumps to Succeed
%% Result is a list of variables to add to the stack, and the matching
%% code.
assemble_pattern(Succeed, Fail, {integer, N}) ->
{[], [push(N),
i(?EQ),
jump_if(Succeed),
jump(Fail)]};
assemble_pattern(Succeed, _Fail, {var_ref, "_"}) ->
{[], [i(?POP), jump(Succeed)]};
assemble_pattern(Succeed, Fail, {missing_field, _, _}) ->
%% Missing record fields are quite ok in patterns.
assemble_pattern(Succeed, Fail, {var_ref, "_"});
assemble_pattern(Succeed, _Fail, {var_ref, Id}) ->
{[{Id, "_"}], jump(Succeed)};
assemble_pattern(Succeed, _Fail, {tuple, []}) ->
{[], [pop(1), jump(Succeed)]};
assemble_pattern(Succeed, Fail, {tuple, [A]}) ->
%% Treat this case specially, because we don't need to save the
%% pointer to the tuple.
{AVars, ACode} = assemble_pattern(Succeed, Fail, A),
{AVars, [i(?MLOAD),
ACode]};
assemble_pattern(Succeed, Fail, {tuple, [A|B]}) ->
%% Entered with the address of the tuple on the top of the
%% stack. We will duplicate the address before matching on A.
Continue = make_ref(), %% the label for matching B
Pop1Fail = make_ref(), %% pop 1 word and goto Fail
PopNFail = make_ref(), %% pop length(AVars) words and goto Fail
{AVars, ACode} =
assemble_pattern(Continue, Pop1Fail, A),
{BVars, BCode} =
assemble_pattern(Succeed, PopNFail, {tuple, B}),
{BVars ++ reorder_vars(AVars),
[%% duplicate the pointer so we don't lose it when we match on A
dup(1),
i(?MLOAD),
ACode,
jumpdest(Continue),
%% Bring the pointer to the top of the stack--this reorders AVars!
swap(length(AVars)),
push(32),
i(?ADD),
BCode,
case AVars of
[] ->
[jumpdest(Pop1Fail), pop(1),
jumpdest(PopNFail),
jump(Fail)];
_ ->
[{'JUMPDEST', PopNFail}, pop(length(AVars)-1),
{'JUMPDEST', Pop1Fail}, pop(1),
{push_label, Fail}, 'JUMP']
end]};
assemble_pattern(Succeed, Fail, {list, []}) ->
%% [] is represented by -1.
{[], [push(1),
i(?ADD),
jump_if(Fail),
jump(Succeed)]};
assemble_pattern(Succeed, Fail, {list, [A|B]}) ->
assemble_pattern(Succeed, Fail, {binop, '::', A, {list, B}});
assemble_pattern(Succeed, Fail, {binop, '::', A, B}) ->
%% Make sure it's not [], then match as tuple.
NotNil = make_ref(),
{Vars, Code} = assemble_pattern(Succeed, Fail, {tuple, [A, B]}),
{Vars, [dup(1), push(1), i(?ADD), %% Check for [] without consuming the value
jump_if(NotNil), %% so it's still there when matching the tuple.
pop(1), %% It was [] so discard the saved value.
jump(Fail),
jumpdest(NotNil),
Code]}.
%% When Vars are on the stack, with a value we want to discard
%% below them, then we swap the top variable with that value and pop.
%% This reorders the variables on the stack, as follows:
reorder_vars([]) ->
[];
reorder_vars([V|Vs]) ->
Vs ++ [V].
assemble_prefix('sha3') -> [i(?DUP1), i(?MLOAD), %% length, ptr
i(?SWAP1), push(32), i(?ADD), %% ptr+32, length
i(?SHA3)];
assemble_prefix('-') -> [push(0), i(?SUB)];
assemble_prefix('bnot') -> i(?NOT).
assemble_infix('+') -> i(?ADD);
assemble_infix('-') -> i(?SUB);
assemble_infix('*') -> i(?MUL);
assemble_infix('/') -> i(?SDIV);
assemble_infix('div') -> i(?DIV);
assemble_infix('mod') -> i(?MOD);
assemble_infix('^') -> i(?EXP);
assemble_infix('bor') -> i(?OR);
assemble_infix('band') -> i(?AND);
assemble_infix('bxor') -> i(?XOR);
assemble_infix('bsl') -> i(?SHL);
assemble_infix('bsr') -> i(?SHR);
assemble_infix('<') -> i(?SLT); %% comparisons are SIGNED
assemble_infix('>') -> i(?SGT);
assemble_infix('==') -> i(?EQ);
assemble_infix('<=') -> [i(?SGT), i(?ISZERO)];
assemble_infix('=<') -> [i(?SGT), i(?ISZERO)];
assemble_infix('>=') -> [i(?SLT), i(?ISZERO)];
assemble_infix('!=') -> [i(?EQ), i(?ISZERO)];
assemble_infix('!') -> [i(?ADD), i(?MLOAD)];
assemble_infix('byte') -> i(?BYTE).
%% assemble_infix('::') -> [i(?MSIZE), write_word(0), write_word(1)].
%% a function may either refer to a top-level function, in which case
%% we fetch the code label from Funs, or it may be a lambda-expression
%% (including a top-level function passed as a parameter). In the
%% latter case, the function value is a pointer to a tuple of the code
%% pointer and the free variables: we keep the pointer and push the
%% code pointer onto the stack. In either case, we are ready to enter
%% the function with JUMP.
assemble_function(Funs, Stack, Fun) ->
case is_top_level_fun(Stack, Fun) of
true ->
{var_ref, Name} = Fun,
{push_label, lookup_fun(Funs, Name)};
false ->
[assemble_expr(Funs, Stack, nontail, Fun),
dup(1),
i(?MLOAD)]
end.
free_vars(V={var_ref, _}) ->
[V];
free_vars({switch, E, Cases}) ->
lists:umerge(free_vars(E),
lists:umerge([free_vars(Body)--free_vars(Pattern)
|| {Pattern, Body} <- Cases]));
free_vars({lambda, Args, Body}) ->
free_vars(Body) -- [{var_ref, Arg#arg.name} || Arg <- Args];
free_vars(T) when is_tuple(T) ->
free_vars(tuple_to_list(T));
free_vars([H|T]) ->
lists:umerge(free_vars(H), free_vars(T));
free_vars(_) ->
[].
%% shuffle_stack reorders the stack, for example before a tailcall. It is called
%% with a description of the current stack, and how the final stack
%% should appear. The argument is a list containing
%% a NUMBER for each element that should be kept, the number being
%% the position this element should occupy in the final stack
%% discard, for elements that can be discarded.
%% The positions start at 1, referring to the variable to be placed at
%% the bottom of the stack, and ranging up to the size of the final stack.
shuffle_stack([]) ->
[];
shuffle_stack([discard|Stack]) ->
[i(?POP) | shuffle_stack(Stack)];
shuffle_stack([N|Stack]) ->
case length(Stack) + 1 - N of
0 ->
%% the job should be finished
CorrectStack = lists:seq(N - 1, 1, -1),
CorrectStack = Stack,
[];
MoveBy ->
{Pref, [_|Suff]} = lists:split(MoveBy - 1, Stack),
[swap(MoveBy) | shuffle_stack([lists:nth(MoveBy, Stack) | Pref ++ [N|Suff]])]
end.
lookup_fun(Funs, Name) ->
case [Ref || {Name1, _, Ref} <- Funs,
Name == Name1] of
[Ref] -> Ref;
[] -> gen_error({undefined_function, Name})
end.
is_top_level_fun(Stack, {var_ref, Id}) ->
not lists:keymember(Id, 1, Stack);
is_top_level_fun(_, _) ->
false.
lookup_var(Id, Stack) ->
lookup_var(1, Id, Stack).
lookup_var(N, Id, [{Id, _Type}|_]) ->
N;
lookup_var(N, Id, [_|Stack]) ->
lookup_var(N + 1, Id, Stack);
lookup_var(_, Id, []) ->
gen_error({var_not_in_scope, Id}).
%% Smart instruction generation
%% TODO: handle references to the stack beyond depth 16. Perhaps the
%% best way is to repush variables that will be needed in
%% subexpressions before evaluating he subexpression... i.e. fix the
%% problem in assemble_expr, rather than here. A fix here would have
%% to save the top elements of the stack in memory, duplicate the
%% targetted element, and then repush the values from memory.
dup(N) when 1 =< N, N =< 16 ->
i(?DUP1 + N - 1).
push(N) ->
Bytes = binary:encode_unsigned(N),
true = size(Bytes) =< 32,
[i(?PUSH1 + size(Bytes) - 1) |
binary_to_list(Bytes)].
%% Pop N values from UNDER the top element of the stack.
%% This is a pseudo-instruction so peephole optimization can
%% combine pop_args(M), pop_args(N) to pop_args(M+N)
pop_args(0) ->
[];
pop_args(N) ->
{pop_args, N}.
%% [swap(N), pop(N)].
pop(N) ->
[i(?POP) || _ <- lists:seq(1, N)].
swap(0) ->
%% Doesn't exist, but is logically a no-op.
[];
swap(N) when 1 =< N, N =< 16 ->
i(?SWAP1 + N - 1).
jumpdest(Label) -> {i(?JUMPDEST), Label}.
push_label(Label) -> {push_label, Label}.
jump(Label) -> [push_label(Label), i(?JUMP)].
jump_if(Label) -> [push_label(Label), i(?JUMPI)].
%% ICode utilities (TODO: move to separate module)
icode_noname() -> #var_ref{name = "_"}.
icode_seq([A]) -> A;
icode_seq([A | As]) ->
icode_seq(A, icode_seq(As)).
icode_seq(A, B) ->
#switch{ expr = A, cases = [{icode_noname(), B}] }.
%% Stack: <N elements> ADDR
%% Write elements at addresses ADDR, ADDR+32, ADDR+64...
%% Stack afterwards: ADDR
% write_words(N) ->
% [write_word(I) || I <- lists:seq(N-1, 0, -1)].
%% Unused at the moment. Comment out to please dialyzer.
%% write_word(I) ->
%% [%% Stack: elements e ADDR
%% swap(1),
%% dup(2),
%% %% Stack: elements ADDR e ADDR
%% push(32*I),
%% i(?ADD),
%% %% Stack: elements ADDR e ADDR+32I
%% i(?MSTORE)].
%% Resolve references, and convert code from deep list to flat list.
%% List elements are:
%% Opcodes
%% Byte values
%% {'JUMPDEST', Ref} -- assembles to ?JUMPDEST and sets Ref
%% {push_label, Ref} -- assembles to ?PUSHN address bytes
%% For now, we assemble all code addresses as three bytes.
resolve_references(Code) ->
Peephole = peep_hole(lists:flatten(Code)),
%% WARNING: Optimizing jumps reorders the code and deletes
%% instructions. When debugging the assemble_ functions, it can be
%% useful to replace the next line by:
%% Instrs = lists:flatten(Code),
%% thus disabling the optimization.
OptimizedJumps = optimize_jumps(Peephole),
Instrs = lists:reverse(peep_hole_backwards(lists:reverse(OptimizedJumps))),
Labels = define_labels(0, Instrs),
lists:flatten([use_labels(Labels, I) || I <- Instrs]).
define_labels(Addr, [{'JUMPDEST', Lab}|More]) ->
[{Lab, Addr}|define_labels(Addr + 1, More)];
define_labels(Addr, [{push_label, _}|More]) ->
define_labels(Addr + 4, More);
define_labels(Addr, [{pop_args, N}|More]) ->
define_labels(Addr + N + 1, More);
define_labels(Addr, [_|More]) ->
define_labels(Addr + 1, More);
define_labels(_, []) ->
[].
use_labels(_, {'JUMPDEST', _}) ->
'JUMPDEST';
use_labels(Labels, {push_label, Ref}) ->
case proplists:get_value(Ref, Labels) of
undefined ->
gen_error({undefined_label, Ref});
Addr when is_integer(Addr) ->
[i(?PUSH3),
Addr div 65536, (Addr div 256) rem 256, Addr rem 256]
end;
use_labels(_, {pop_args, N}) ->
[swap(N), pop(N)];
use_labels(_, I) ->
I.
%% Peep-hole optimization.
%% The compilation of conditionals can introduce jumps depending on
%% constants 1 and 0. These are removed by peep-hole optimization.
peep_hole(['PUSH1', 0, {push_label, _}, 'JUMPI'|More]) ->
peep_hole(More);
peep_hole(['PUSH1', 1, {push_label, Lab}, 'JUMPI'|More]) ->
[{push_label, Lab}, 'JUMP'|peep_hole(More)];
peep_hole([{pop_args, M}, {pop_args, N}|More]) when M + N =< 16 ->
peep_hole([{pop_args, M + N}|More]);
peep_hole([I|More]) ->
[I|peep_hole(More)];
peep_hole([]) ->
[].
%% Peep-hole optimization on reversed instructions lists.
peep_hole_backwards(Code) ->
NewCode = peep_hole_backwards1(Code),
if Code == NewCode -> Code;
true -> peep_hole_backwards(NewCode)
end.
peep_hole_backwards1(['ADD', 0, 'PUSH1'|Code]) ->
peep_hole_backwards1(Code);
peep_hole_backwards1(['POP', UnOp|Code]) when UnOp=='MLOAD';UnOp=='ISZERO';UnOp=='NOT' ->
peep_hole_backwards1(['POP'|Code]);
peep_hole_backwards1(['POP', BinOp|Code]) when
%% TODO: more binary operators
BinOp=='ADD';BinOp=='SUB';BinOp=='MUL';BinOp=='SDIV' ->
peep_hole_backwards1(['POP', 'POP'|Code]);
peep_hole_backwards1(['POP', _, 'PUSH1'|Code]) ->
peep_hole_backwards1(Code);
peep_hole_backwards1([I|Code]) ->
[I|peep_hole_backwards1(Code)];
peep_hole_backwards1([]) ->
[].
%% Jump optimization:
%% Replaces a jump to a jump with a jump to the final destination
%% Moves basic blocks to eliminate an unconditional jump to them.
%% The compilation of conditionals generates a lot of labels and
%% jumps, some of them unnecessary. This optimization phase reorders
%% code so that as many jumps as possible can be eliminated, and
%% replaced by just falling through to the destination label. This
%% both optimizes the code generated by conditionals, and converts one
%% call of a function into falling through into its code--so it
%% reorders code quite aggressively. Function returns are indirect
%% jumps, however, and are never optimized away.
%% IMPORTANT: since execution begins at address zero, then the first
%% block of code must never be moved elsewhere. The code below has
%% this property, because it processes blocks from left to right, and
%% because the first block does not begin with a label, and so can
%% never be jumped to--hence no code can be inserted before it.
%% The optimization works by taking one block of code at a time, and
%% then prepending blocks that jump directly to it, and appending
%% blocks that it jumps directly to, resulting in a jump-free sequence
%% that is as long as possible. To do so, we store blocks in the form
%% {OptionalLabel, Body, OptionalJump} which represents the code block
%% OptionalLabel++Body++OptionalJump; the optional parts are the empty
%% list of instructions if not present. Two blocks can be merged if
%% the first ends in an OptionalJump to the OptionalLabel beginning
%% the second; the OptionalJump can then be removed (and the
%% OptionalLabel if there are no other references to it--this happens
%% during dead code elimination.
%% TODO: the present implementation is QUADRATIC, because we search
%% repeatedly for matching blocks to merge with the first one, storing
%% the blocks in a list. A near linear time implementation could use
%% two ets tables, one keyed on the labels, and the other keyed on the
%% final jumps.
optimize_jumps(Code) ->
JJs = jumps_to_jumps(Code),
ShortCircuited = [short_circuit_jumps(JJs, Instr) || Instr <- Code],
NoDeadCode = eliminate_dead_code(ShortCircuited),
MovedCode = merge_blocks(moveable_blocks(NoDeadCode)),
%% Moving code may have made some labels superfluous.
eliminate_dead_code(MovedCode).
jumps_to_jumps([{'JUMPDEST', Label}, {push_label, Target}, 'JUMP'|More]) ->
[{Label, Target}|jumps_to_jumps(More)];
jumps_to_jumps([{'JUMPDEST', Label}, {'JUMPDEST', Target}|More]) ->
[{Label, Target}|jumps_to_jumps([{'JUMPDEST', Target}|More])];
jumps_to_jumps([_|More]) ->
jumps_to_jumps(More);
jumps_to_jumps([]) ->
[].
short_circuit_jumps(JJs, {push_label, Lab}) ->
case proplists:get_value(Lab, JJs) of
undefined ->
{push_label, Lab};
Target ->
%% I wonder if this will ever loop infinitely?
short_circuit_jumps(JJs, {push_label, Target})
end;
short_circuit_jumps(_JJs, Instr) ->
Instr.
eliminate_dead_code(Code) ->
Jumps = lists:usort([Lab || {push_label, Lab} <- Code]),
NewCode = live_code(Jumps, Code),
if Code==NewCode ->
Code;
true ->
eliminate_dead_code(NewCode)
end.
live_code(Jumps, ['JUMP'|More]) ->
['JUMP'|dead_code(Jumps, More)];
live_code(Jumps, ['STOP'|More]) ->
['STOP'|dead_code(Jumps, More)];
live_code(Jumps, [{'JUMPDEST', Lab}|More]) ->
case lists:member(Lab, Jumps) of
true ->
[{'JUMPDEST', Lab}|live_code(Jumps, More)];
false ->
live_code(Jumps, More)
end;
live_code(Jumps, [I|More]) ->
[I|live_code(Jumps, More)];
live_code(_, []) ->
[].
dead_code(Jumps, [{'JUMPDEST', Lab}|More]) ->
case lists:member(Lab, Jumps) of
true ->
[{'JUMPDEST', Lab}|live_code(Jumps, More)];
false ->
dead_code(Jumps, More)
end;
dead_code(Jumps, [_I|More]) ->
dead_code(Jumps, More);
dead_code(_, []) ->
[].
%% Split the code into "moveable blocks" that control flow only
%% reaches via jumps.
moveable_blocks([]) ->
[];
moveable_blocks([I]) ->
[[I]];
moveable_blocks([Jump|More]) when Jump=='JUMP'; Jump=='STOP' ->
[[Jump]|moveable_blocks(More)];
moveable_blocks([I|More]) ->
[Block|MoreBlocks] = moveable_blocks(More),
[[I|Block]|MoreBlocks].
%% Merge blocks to eliminate jumps where possible.
merge_blocks(Blocks) ->
BlocksAndTargets = [label_and_jump(B) || B <- Blocks],
[I || {Pref, Body, Suff} <- merge_after(BlocksAndTargets),
I <- Pref++Body++Suff].
%% Merge the first block with other blocks that come after it
merge_after(All=[{Label, Body, [{push_label, Target}, 'JUMP']}|BlocksAndTargets]) ->
case [{B, J} || {[{'JUMPDEST', L}], B, J} <- BlocksAndTargets,
L == Target] of
[{B, J}|_] ->
merge_after([{Label, Body ++ [{'JUMPDEST', Target}] ++ B, J}|
lists:delete({[{'JUMPDEST', Target}], B, J},
BlocksAndTargets)]);
[] ->
merge_before(All)
end;
merge_after(All) ->
merge_before(All).
%% The first block cannot be merged with any blocks that it jumps
%% to... but maybe it can be merged with a block that jumps to it!
merge_before([Block={[{'JUMPDEST', Label}], Body, Jump}|BlocksAndTargets]) ->
case [{L, B, T} || {L, B, [{push_label, T}, 'JUMP']} <- BlocksAndTargets,
T == Label] of
[{L, B, T}|_] ->
merge_before([{L, B ++ [{'JUMPDEST', Label}] ++ Body, Jump}
|lists:delete({L, B, [{push_label, T}, 'JUMP']}, BlocksAndTargets)]);
_ ->
[Block | merge_after(BlocksAndTargets)]
end;
merge_before([Block|BlocksAndTargets]) ->
[Block | merge_after(BlocksAndTargets)];
merge_before([]) ->
[].
%% Convert each block to a PREFIX, which is a label or empty, a
%% middle, and a SUFFIX which is a JUMP to a label, or empty.
label_and_jump(B) ->
{Label, B1} = case B of
[{'JUMPDEST', L}|More1] ->
{[{'JUMPDEST', L}], More1};
_ ->
{[], B}
end,
{Target, B2} = case lists:reverse(B1) of
['JUMP', {push_label, T}|More2] ->
{[{push_label, T}, 'JUMP'], lists:reverse(More2)};
_ ->
{[], B1}
end,
{Label, B2, Target}.

View File

@ -1,75 +1,15 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc Decoding aevm and fate data to AST
%%%
%%% @doc Decoding fate data to AST
%%% @end
%%%-------------------------------------------------------------------
-module(aeso_vm_decode).
-export([ from_aevm/3, from_fate/2 ]).
-export([ from_fate/2 ]).
-include_lib("aebytecode/include/aeb_fate_data.hrl").
address_literal(Type, N) -> {Type, [], <<N:256>>}.
-spec from_aevm(aeb_aevm_data:type(), aeso_syntax:type(), aeb_aevm_data:data()) -> aeso_syntax:expr().
from_aevm(word, {id, _, "address"}, N) -> address_literal(account_pubkey, N);
from_aevm(word, {app_t, _, {id, _, "oracle"}, _}, N) -> address_literal(oracle_pubkey, N);
from_aevm(word, {app_t, _, {id, _, "oracle_query"}, _}, N) -> address_literal(oracle_query_id, N);
from_aevm(word, {con, _, _Name}, N) -> address_literal(contract_pubkey, N);
from_aevm(word, {id, _, "int"}, N0) ->
<<N:256/signed>> = <<N0:256>>,
if N < 0 -> {app, [{format, prefix}], {'-', []}, [{int, [], -N}]};
true -> {int, [], N} end;
from_aevm(word, {id, _, "bits"}, N0) ->
<<N:256/signed>> = <<N0:256>>,
make_bits(N);
from_aevm(word, {id, _, "bool"}, N) -> {bool, [], N /= 0};
from_aevm(word, {bytes_t, _, Len}, Val) when Len =< 32 ->
<<Bytes:Len/unit:8, _/binary>> = <<Val:32/unit:8>>,
{bytes, [], <<Bytes:Len/unit:8>>};
from_aevm({tuple, _}, {bytes_t, _, Len}, Val) ->
{bytes, [], binary:part(<< <<W:32/unit:8>> || W <- tuple_to_list(Val) >>, 0, Len)};
from_aevm(string, {id, _, "string"}, S) -> {string, [], S};
from_aevm({list, VmType}, {app_t, _, {id, _, "list"}, [Type]}, List) ->
{list, [], [from_aevm(VmType, Type, X) || X <- List]};
from_aevm({variant, [[], [VmType]]}, {app_t, _, {id, _, "option"}, [Type]}, Val) ->
case Val of
{variant, 0, []} -> {con, [], "None"};
{variant, 1, [X]} -> {app, [], {con, [], "Some"}, [from_aevm(VmType, Type, X)]}
end;
from_aevm({tuple, VmTypes}, {tuple_t, _, Types}, Val)
when length(VmTypes) == length(Types),
length(VmTypes) == tuple_size(Val) ->
{tuple, [], [from_aevm(VmType, Type, X)
|| {VmType, Type, X} <- lists:zip3(VmTypes, Types, tuple_to_list(Val))]};
from_aevm({tuple, VmTypes}, {record_t, Fields}, Val)
when length(VmTypes) == length(Fields),
length(VmTypes) == tuple_size(Val) ->
{record, [], [ {field, [], [{proj, [], FName}], from_aevm(VmType, FType, X)}
|| {VmType, {field_t, _, FName, FType}, X} <- lists:zip3(VmTypes, Fields, tuple_to_list(Val)) ]};
from_aevm({map, VmKeyType, VmValType}, {app_t, _, {id, _, "map"}, [KeyType, ValType]}, Map)
when is_map(Map) ->
{map, [], [ {from_aevm(VmKeyType, KeyType, Key),
from_aevm(VmValType, ValType, Val)}
|| {Key, Val} <- maps:to_list(Map) ]};
from_aevm({variant, VmCons}, {variant_t, Cons}, {variant, Tag, Args})
when length(VmCons) == length(Cons),
length(VmCons) > Tag ->
VmTypes = lists:nth(Tag + 1, VmCons),
ConType = lists:nth(Tag + 1, Cons),
from_aevm(VmTypes, ConType, Args);
from_aevm([], {constr_t, _, Con, []}, []) -> Con;
from_aevm(VmTypes, {constr_t, _, Con, Types}, Args)
when length(VmTypes) == length(Types),
length(VmTypes) == length(Args) ->
{app, [], Con, [ from_aevm(VmType, Type, Arg)
|| {VmType, Type, Arg} <- lists:zip3(VmTypes, Types, Args) ]};
from_aevm(_VmType, _Type, _Data) ->
throw(cannot_translate_to_sophia).
-spec from_fate(aeso_syntax:type(), aeb_fate_data:fate_type()) -> aeso_syntax:expr().
from_fate({id, _, "address"}, ?FATE_ADDRESS(Bin)) -> {account_pubkey, [], Bin};
from_fate({app_t, _, {id, _, "oracle"}, _}, ?FATE_ORACLE(Bin)) -> {oracle_pubkey, [], Bin};

View File

@ -5,7 +5,6 @@
-define(SANDBOX(Code), sandbox(fun() -> Code end)).
-define(DUMMY_HASH_WORD, 16#123).
-define(DUMMY_HASH, <<0:30/unit:8, 127, 119>>). %% 16#123
-define(DUMMY_HASH_LIT, "#0000000000000000000000000000000000000000000000000000000000000123").
sandbox(Code) ->
@ -13,19 +12,13 @@ sandbox(Code) ->
Tag = make_ref(),
{Pid, Ref} = spawn_monitor(fun() -> Parent ! {Tag, Code()} end),
receive
{Tag, Res} -> erlang:demonitor(Ref, [flush]), {ok, Res};
{'DOWN', Ref, process, Pid, Reason} -> {error, Reason}
{Tag1, Res} when Tag1 =:= Tag -> erlang:demonitor(Ref, [flush]), {ok, Res};
{'DOWN', Ref1, process, Pid1, Reason} when Ref1 =:= Ref andalso Pid1 =:= Pid -> {error, Reason}
after 100 ->
exit(Pid, kill),
{error, loop}
end.
malicious_from_binary_test() ->
CircularList = from_words([32, 1, 32]), %% Xs = 1 :: Xs
{ok, {error, circular_references}} = ?SANDBOX(aeb_heap:from_binary({list, word}, CircularList)),
{ok, {error, {binary_too_short, _}}} = ?SANDBOX(aeb_heap:from_binary(word, <<1, 2, 3, 4>>)),
ok.
from_words(Ws) ->
<< <<(from_word(W))/binary>> || W <- Ws >>.
@ -37,23 +30,14 @@ from_word(S) when is_list(S) ->
<<Len:256, Bin/binary>>.
encode_decode_test() ->
encode_decode(word, 42),
42 = encode_decode(word, 42),
-1 = encode_decode(signed_word, -1),
<<"Hello world">> = encode_decode(string, <<"Hello world">>),
{} = encode_decode({tuple, []}, {}),
{42} = encode_decode({tuple, [word]}, {42}),
{42, 0} = encode_decode({tuple, [word, word]}, {42, 0}),
[] = encode_decode({list, word}, []),
[32] = encode_decode({list, word}, [32]),
none = encode_decode({option, word}, none),
{some, 1} = encode_decode({option, word}, {some, 1}),
string = encode_decode(typerep, string),
word = encode_decode(typerep, word),
{list, word} = encode_decode(typerep, {list, word}),
{tuple, [word]} = encode_decode(typerep, {tuple, [word]}),
1 = encode_decode(word, 1),
0 = encode_decode(word, 0),
Tests =
[42, 1, 0 -1, <<"Hello">>,
{tuple, {}}, {tuple, {42}}, {tuple, {21, 37}},
[], [42], [21, 37],
{variant, [0, 1], 0, {}}, {variant, [0, 1], 1, {42}}, {variant, [2], 0, {21, 37}},
{typerep, string}, {typerep, integer}, {typerep, {list, integer}}, {typerep, {tuple, [integer]}}
],
[?assertEqual(Test, encode_decode(Test)) || Test <- Tests],
ok.
encode_decode_sophia_test() ->
@ -95,55 +79,44 @@ to_sophia_value_mcl_bls12_381_test() ->
to_sophia_value_neg_test() ->
Code = [ "contract Foo =\n"
" entrypoint x(y : int) : string = \"hello\"\n" ],
" entrypoint f(x : int) : string = \"hello\"\n" ],
{error, [Err1]} = aeso_compiler:to_sophia_value(Code, "x", ok, encode(12)),
?assertEqual("Data error:\nFailed to decode binary as type string\n", aeso_errors:pp(Err1)),
{error, [Err2]} = aeso_compiler:to_sophia_value(Code, "x", ok, encode(12), [{backend, fate}]),
?assertEqual("Data error:\nFailed to decode binary as type string\n", aeso_errors:pp(Err2)),
{error, [Err1]} = aeso_compiler:to_sophia_value(Code, "f", ok, encode(12)),
?assertEqual("Data error:\nCannot translate FATE value 12\n of Sophia type string\n", aeso_errors:pp(Err1)),
{error, [Err3]} = aeso_compiler:to_sophia_value(Code, "x", revert, encode(12)),
?assertEqual("Data error:\nCould not interpret the revert message\n", aeso_errors:pp(Err3)),
{error, [Err4]} = aeso_compiler:to_sophia_value(Code, "x", revert, encode(12), [{backend, fate}]),
?assertEqual("Data error:\nCould not deserialize the revert message\n", aeso_errors:pp(Err4)),
{error, [Err2]} = aeso_compiler:to_sophia_value(Code, "f", revert, encode(12)),
?assertEqual("Data error:\nCould not deserialize the revert message\n", aeso_errors:pp(Err2)),
ok.
encode_calldata_neg_test() ->
Code = [ "contract Foo =\n"
" entrypoint x(y : int) : string = \"hello\"\n" ],
" entrypoint f(x : int) : string = \"hello\"\n" ],
ExpErr1 = "Type error at line 5, col 34:\nCannot unify `int` and `bool`\n"
"when checking the application of\n"
" `x : (int) => string`\n"
" `f : (int) => string`\n"
"to arguments\n"
" `true : bool`\n",
{error, [Err1]} = aeso_compiler:create_calldata(Code, "x", ["true"]),
{error, [Err1]} = aeso_compiler:create_calldata(Code, "f", ["true"]),
?assertEqual(ExpErr1, aeso_errors:pp(Err1)),
{error, [Err2]} = aeso_compiler:create_calldata(Code, "x", ["true"], [{backend, fate}]),
?assertEqual(ExpErr1, aeso_errors:pp(Err2)),
ok.
decode_calldata_neg_test() ->
Code1 = [ "contract Foo =\n"
" entrypoint x(y : int) : string = \"hello\"\n" ],
" entrypoint f(x : int) : string = \"hello\"\n" ],
Code2 = [ "contract Foo =\n"
" entrypoint x(y : string) : int = 42\n" ],
" entrypoint f(x : string) : int = 42\n" ],
{ok, CallDataAEVM} = aeso_compiler:create_calldata(Code1, "x", ["42"]),
{ok, CallDataFATE} = aeso_compiler:create_calldata(Code1, "x", ["42"], [{backend, fate}]),
{ok, CallDataFATE} = aeso_compiler:create_calldata(Code1, "f", ["42"]),
{error, [Err1]} = aeso_compiler:decode_calldata(Code2, "x", CallDataAEVM),
?assertEqual("Data error:\nFailed to decode calldata as type {tuple,[string]}\n", aeso_errors:pp(Err1)),
{error, [Err2]} = aeso_compiler:decode_calldata(Code2, "x", <<1,2,3>>, [{backend, fate}]),
?assertEqual("Data error:\nFailed to decode calldata binary\n", aeso_errors:pp(Err2)),
{error, [Err3]} = aeso_compiler:decode_calldata(Code2, "x", CallDataFATE, [{backend, fate}]),
?assertEqual("Data error:\nCannot translate FATE value \"*\"\n to Sophia type (string)\n", aeso_errors:pp(Err3)),
{error, [Err1]} = aeso_compiler:decode_calldata(Code2, "f", <<1,2,3>>),
?assertEqual("Data error:\nFailed to decode calldata binary\n", aeso_errors:pp(Err1)),
{error, [Err2]} = aeso_compiler:decode_calldata(Code2, "f", CallDataFATE),
?assertEqual("Data error:\nCannot translate FATE value \"*\"\n to Sophia type (string)\n", aeso_errors:pp(Err2)),
{error, [Err4]} = aeso_compiler:decode_calldata(Code2, "y", CallDataAEVM),
?assertEqual("Data error at line 1, col 1:\nFunction 'y' is missing in contract\n", aeso_errors:pp(Err4)),
{error, [Err5]} = aeso_compiler:decode_calldata(Code2, "y", CallDataFATE, [{backend, fate}]),
?assertEqual("Data error at line 1, col 1:\nFunction 'y' is missing in contract\n", aeso_errors:pp(Err5)),
{error, [Err3]} = aeso_compiler:decode_calldata(Code2, "x", CallDataFATE),
?assertEqual("Data error at line 1, col 1:\nFunction 'x' is missing in contract\n", aeso_errors:pp(Err3)),
ok.
@ -156,8 +129,7 @@ encode_decode_sophia_string(SophiaType, String) ->
, " datatype variant = Red | Blue(map(string, int))\n"
, " entrypoint foo : arg_type => arg_type\n" ],
case aeso_compiler:check_call(lists:flatten(Code), "foo", [String], [no_code]) of
{ok, _, {[Type], _}, [Arg]} ->
io:format("Type ~p~n", [Type]),
{ok, _, [Arg]} ->
Data = encode(Arg),
case aeso_compiler:to_sophia_value(Code, "foo", ok, Data, [no_code]) of
{ok, Sophia} ->
@ -173,30 +145,32 @@ encode_decode_sophia_string(SophiaType, String) ->
calldata_test() ->
[42, <<"foobar">>] = encode_decode_calldata("foo", ["int", "string"], ["42", "\"foobar\""]),
Map = #{ <<"a">> => 4 },
[{variant, 1, [Map]}, {{<<"b">>, 5}, {variant, 0, []}}] =
[{variant, [0,1], 1, {#{ <<"a">> := 4 }}}, {tuple, {{tuple, {<<"b">>, 5}}, {variant, [0,1], 0, {}}}}] =
encode_decode_calldata("foo", ["variant", "r"], ["Blue({[\"a\"] = 4})", "{x = (\"b\", 5), y = Red}"]),
[?DUMMY_HASH_WORD, 16#456] = encode_decode_calldata("foo", ["bytes(32)", "address"],
[{bytes, <<291:256>>}, {address, <<1110:256>>}] =
encode_decode_calldata("foo", ["bytes(32)", "address"],
[?DUMMY_HASH_LIT, "ak_1111111111111111111111111111113AFEFpt5"]),
[?DUMMY_HASH_WORD, ?DUMMY_HASH_WORD] =
[{bytes, <<291:256>>}, {bytes, <<291:256>>}] =
encode_decode_calldata("foo", ["bytes(32)", "hash"], [?DUMMY_HASH_LIT, ?DUMMY_HASH_LIT]),
[119, {0, 0}] = encode_decode_calldata("foo", ["int", "signature"], ["119", [$# | lists:duplicate(128, $0)]]),
[119, {bytes, <<0:64/unit:8>>}] = encode_decode_calldata("foo", ["int", "signature"], ["119", [$# | lists:duplicate(128, $0)]]),
[16#456] = encode_decode_calldata("foo", ["Remote"], ["ct_1111111111111111111111111111113AFEFpt5"]),
[{contract, <<1110:256>>}] = encode_decode_calldata("foo", ["Remote"], ["ct_1111111111111111111111111111113AFEFpt5"]),
ok.
calldata_init_test() ->
encode_decode_calldata("init", ["int"], ["42"], {tuple, [typerep, word]}),
encode_decode_calldata("init", ["int"], ["42"]),
Code = parameterized_contract("foo", ["int"]),
encode_decode_calldata_(Code, "init", [], {tuple, [typerep, {tuple, []}]}).
encode_decode_calldata_(Code, "init", []),
ok.
calldata_indent_test() ->
Test = fun(Extra) ->
Code = parameterized_contract(Extra, "foo", ["int"]),
encode_decode_calldata_(Code, "foo", ["42"], word)
encode_decode_calldata_(Code, "foo", ["42"])
end,
Test(" stateful entrypoint bla() = ()"),
Test(" type x = int"),
@ -225,9 +199,9 @@ oracle_test() ->
"contract OracleTest =\n"
" entrypoint question(o, q : oracle_query(list(string), option(int))) =\n"
" Oracle.get_question(o, q)\n",
{ok, _, {[word, word], {list, string}}, [16#123, 16#456]} =
?assertEqual({ok, "question", [{oracle, <<291:256>>}, {oracle_query, <<1110:256>>}]},
aeso_compiler:check_call(Contract, "question", ["ok_111111111111111111111111111111ZrdqRz9",
"oq_1111111111111111111111111111113AFEFpt5"], [no_code]),
"oq_1111111111111111111111111111113AFEFpt5"], [no_code])),
ok.
@ -243,35 +217,26 @@ permissive_literals_fail_test() ->
ok.
encode_decode_calldata(FunName, Types, Args) ->
encode_decode_calldata(FunName, Types, Args, word).
encode_decode_calldata(FunName, Types, Args, RetType) ->
Code = parameterized_contract(FunName, Types),
encode_decode_calldata_(Code, FunName, Args, RetType).
encode_decode_calldata_(Code, FunName, Args).
encode_decode_calldata_(Code, FunName, Args, RetVMType) ->
encode_decode_calldata_(Code, FunName, Args) ->
{ok, Calldata} = aeso_compiler:create_calldata(Code, FunName, Args, []),
{ok, _, {ArgTypes, RetType}, _} = aeso_compiler:check_call(Code, FunName, Args, [{backend, aevm}, no_code]),
?assertEqual(RetType, RetVMType),
CalldataType = {tuple, [word, {tuple, ArgTypes}]},
{ok, {_Hash, ArgTuple}} = aeb_heap:from_binary(CalldataType, Calldata),
{ok, _, _} = aeso_compiler:check_call(Code, FunName, Args, [no_code]),
case FunName of
"init" ->
ok;
[];
_ ->
{ok, _ArgTypes, ValueASTs} = aeso_compiler:decode_calldata(Code, FunName, Calldata, []),
Values = [ prettypr:format(aeso_pretty:expr(V)) || V <- ValueASTs ],
?assertMatch({X, X}, {Args, Values})
end,
tuple_to_list(ArgTuple).
{ok, FateArgs} = aeb_fate_abi:decode_calldata(FunName, Calldata),
FateArgs
end.
encode_decode(T, D) ->
?assertEqual(D, decode(T, encode(D))),
encode_decode(D) ->
?assertEqual(D, decode(encode(D))),
D.
encode(D) ->
aeb_heap:to_binary(D).
aeb_fate_encoding:serialize(D).
decode(T,B) ->
{ok, D} = aeb_heap:from_binary(T, B),
D.
decode(B) ->
aeb_fate_encoding:deserialize(B).

View File

@ -19,19 +19,9 @@ calldata_test_() ->
[ {"Testing " ++ ContractName ++ " contract calling " ++ Fun,
fun() ->
ContractString = aeso_test_utils:read_contract(ContractName),
AevmExprs =
case not lists:member(ContractName, not_yet_compilable(aevm)) of
true -> ast_exprs(ContractString, Fun, Args, [{backend, aevm}]);
false -> undefined
end,
FateExprs =
case not lists:member(ContractName, not_yet_compilable(fate)) of
true -> ast_exprs(ContractString, Fun, Args, [{backend, fate}]);
false -> undefined
end,
FateExprs = ast_exprs(ContractString, Fun, Args),
ParsedExprs = parse_args(Fun, Args),
[ ?assertEqual(ParsedExprs, AevmExprs) || AevmExprs /= undefined ],
[ ?assertEqual(ParsedExprs, FateExprs) || FateExprs /= undefined ],
?assertEqual(ParsedExprs, FateExprs),
ok
end} || {ContractName, Fun, Args} <- compilable_contracts()].
@ -42,19 +32,9 @@ calldata_aci_test_() ->
{ok, ContractACIBin} = aeso_aci:contract_interface(string, ContractString),
ContractACI = binary_to_list(ContractACIBin),
io:format("ACI:\n~s\n", [ContractACIBin]),
AevmExprs =
case not lists:member(ContractName, not_yet_compilable(aevm)) of
true -> ast_exprs(ContractACI, Fun, Args, [{backend, aevm}]);
false -> undefined
end,
FateExprs =
case not lists:member(ContractName, not_yet_compilable(fate)) of
true -> ast_exprs(ContractACI, Fun, Args, [{backend, fate}]);
false -> undefined
end,
FateExprs = ast_exprs(ContractACI, Fun, Args),
ParsedExprs = parse_args(Fun, Args),
[ ?assertEqual(ParsedExprs, AevmExprs) || AevmExprs /= undefined ],
[ ?assertEqual(ParsedExprs, FateExprs) || FateExprs /= undefined ],
?assertEqual(ParsedExprs, FateExprs),
ok
end} || {ContractName, Fun, Args} <- compilable_contracts()].
@ -75,6 +55,8 @@ strip_ann1(L) when is_list(L) ->
lists:map(fun strip_ann/1, L);
strip_ann1(X) -> X.
ast_exprs(ContractString, Fun, Args) ->
ast_exprs(ContractString, Fun, Args, []).
ast_exprs(ContractString, Fun, Args, Opts) ->
{ok, Data} = (catch aeso_compiler:create_calldata(ContractString, Fun, Args, Opts)),
{ok, _Types, Exprs} = (catch aeso_compiler:decode_calldata(ContractString, Fun, Data, Opts)),
@ -159,8 +141,3 @@ compilable_contracts() ->
{"stub", "foo", ["-42"]},
{"payable", "foo", ["42"]}
].
not_yet_compilable(fate) ->
[];
not_yet_compilable(aevm) ->
["funargs", "strings"].

View File

@ -24,20 +24,15 @@ run_test(Test) ->
%% are made on the output, just that it is a binary which indicates
%% that the compilation worked.
simple_compile_test_() ->
[ {"Testing the " ++ ContractName ++ " contract with the " ++ atom_to_list(Backend) ++ " backend",
[ {"Testing the " ++ ContractName ++ " contract",
fun() ->
case compile(Backend, ContractName) of
#{byte_code := ByteCode,
contract_source := _,
type_info := _} when Backend == aevm ->
?assertMatch(Code when is_binary(Code), ByteCode);
#{fate_code := Code} when Backend == fate ->
case compile(ContractName) of
#{fate_code := Code} ->
Code1 = aeb_fate_code:deserialize(aeb_fate_code:serialize(Code)),
?assertMatch({X, X}, {Code1, Code});
Error -> io:format("\n\n~p\n\n", [Error]), print_and_throw(Error)
end
end} || ContractName <- compilable_contracts(), Backend <- [aevm, fate],
not lists:member(ContractName, not_compilable_on(Backend))] ++
end} || ContractName <- compilable_contracts()] ++
[ {"Test file not found error",
fun() ->
{error, Errors} = aeso_compiler:file("does_not_exist.aes"),
@ -46,26 +41,16 @@ simple_compile_test_() ->
end} ] ++
[ {"Testing error messages of " ++ ContractName,
fun() ->
Errors = compile(aevm, ContractName, [warn_all, warn_error]),
Errors = compile(ContractName, [warn_all, warn_error]),
check_errors(ExpectedErrors, Errors)
end} ||
{ContractName, ExpectedErrors} <- failing_contracts() ] ++
[ {"Testing " ++ atom_to_list(Backend) ++ " code generation error messages of " ++ ContractName,
[ {"Testing code generation error messages of " ++ ContractName,
fun() ->
Errors = compile(Backend, ContractName),
Expect =
case is_binary(ExpectedError) of
true -> [ExpectedError];
false ->
case proplists:get_value(Backend, ExpectedError, no_error) of
no_error -> no_error;
Err -> [Err]
end
end,
check_errors(Expect, Errors)
Errors = compile(ContractName),
check_errors([ExpectedError], Errors)
end} ||
{ContractName, ExpectedError} <- failing_code_gen_contracts(),
Backend <- [aevm, fate] ] ++
{ContractName, ExpectedError} <- failing_code_gen_contracts()] ++
[ {"Testing include with explicit files",
fun() ->
FileSystem = maps:from_list(
@ -73,26 +58,25 @@ simple_compile_test_() ->
{ok, Bin} = file:read_file(filename:join([aeso_test_utils:contract_path(), File])),
{File, Bin}
end || File <- ["included.aes", "../contracts/included2.aes"] ]),
#{byte_code := Code1} = compile(aevm, "include", [{include, {explicit_files, FileSystem}}]),
#{byte_code := Code2} = compile(aevm, "include"),
#{byte_code := Code1} = compile("include", [{include, {explicit_files, FileSystem}}]),
#{byte_code := Code2} = compile("include"),
?assertMatch(true, Code1 == Code2)
end} ] ++
[ {"Testing deadcode elimination for " ++ atom_to_list(Backend),
[ {"Testing deadcode elimination",
fun() ->
#{ byte_code := NoDeadCode } = compile(Backend, "nodeadcode"),
#{ byte_code := DeadCode } = compile(Backend, "deadcode"),
#{ byte_code := NoDeadCode } = compile("nodeadcode"),
#{ byte_code := DeadCode } = compile("deadcode"),
SizeNoDeadCode = byte_size(NoDeadCode),
SizeDeadCode = byte_size(DeadCode),
Delta = if Backend == aevm -> 40;
Backend == fate -> 20 end,
Delta = 20,
?assertMatch({_, _, true}, {SizeDeadCode, SizeNoDeadCode, SizeDeadCode + Delta < SizeNoDeadCode}),
ok
end} || Backend <- [aevm, fate] ] ++
end} ] ++
[ {"Testing warning messages",
fun() ->
#{ warnings := Warnings } = compile(Backend, "warnings", [warn_all]),
#{ warnings := Warnings } = compile("warnings", [warn_all]),
check_warnings(warnings(), Warnings)
end} || Backend <- [aevm, fate] ] ++
end} ] ++
[].
%% Check if all modules in the standard library compile
@ -101,7 +85,7 @@ stdlib_test_() ->
[ { "Testing " ++ File ++ " from the stdlib",
fun() ->
String = "include \"" ++ File ++ "\"\nmain contract Test =\n entrypoint f(x) = x",
Options = [{src_file, File}, {backend, fate}],
Options = [{src_file, File}],
case aeso_compiler:from_string(String, Options) of
{ok, #{fate_code := Code}} ->
Code1 = aeb_fate_code:deserialize(aeb_fate_code:serialize(Code)),
@ -133,18 +117,17 @@ check_warnings(Expect0, Actual0) ->
{Missing, Extra} -> ?assertEqual(Missing, Extra)
end.
compile(Backend, Name) ->
compile(Backend, Name,
[{include, {file_system, [aeso_test_utils:contract_path()]}}]).
compile(Name) ->
compile( Name, [{include, {file_system, [aeso_test_utils:contract_path()]}}]).
compile(Backend, Name, Options) ->
compile(Name, Options) ->
String = aeso_test_utils:read_contract(Name),
Options1 =
case lists:member(Name, debug_mode_contracts()) of
true -> [debug_mode];
false -> []
end ++
[ {src_file, Name ++ ".aes"}, {backend, Backend}
[ {src_file, Name ++ ".aes"}
, {include, {file_system, [aeso_test_utils:contract_path()]}}
] ++ Options,
case aeso_compiler:from_string(String, Options1) of
@ -222,9 +205,6 @@ compilable_contracts() ->
"test" % Custom general-purpose test file. Keep it last on the list.
].
not_compilable_on(fate) -> [];
not_compilable_on(aevm) -> compilable_contracts().
debug_mode_contracts() ->
["hermetization_turnoff"].
@ -840,113 +820,51 @@ failing_contracts() ->
-define(Path(File), "code_errors/" ??File).
-define(Msg(File, Line, Col, Err), <<?Pos("Code generation", ?Path(File), Line, Col) Err>>).
-define(SAME(File, Line, Col, Err), {?Path(File), ?Msg(File, Line, Col, Err)}).
-define(AEVM(File, Line, Col, Err), {?Path(File), [{aevm, ?Msg(File, Line, Col, Err)}]}).
-define(FATE(File, Line, Col, Err), {?Path(File), [{fate, ?Msg(File, Line, Col, Err)}]}).
-define(BOTH(File, Line, Col, ErrAEVM, ErrFATE),
{?Path(File), [{aevm, ?Msg(File, Line, Col, ErrAEVM)},
{fate, ?Msg(File, Line, Col, ErrFATE)}]}).
-define(FATE_ERR(File, Line, Col, Err), {?Path(File), ?Msg(File, Line, Col, Err)}).
failing_code_gen_contracts() ->
[ ?SAME(missing_definition, 2, 14,
[ ?FATE_ERR(missing_definition, 2, 14,
"Missing definition of function 'foo'.")
, ?AEVM(polymorphic_entrypoint, 2, 17,
"The argument\n"
" x : 'a\n"
"of entrypoint 'id' has a polymorphic (contains type variables) type.\n"
"Use the FATE backend if you want polymorphic entrypoints.")
, ?AEVM(polymorphic_entrypoint_return, 2, 3,
"The return type\n"
" 'a\n"
"of entrypoint 'fail' is polymorphic (contains type variables).\n"
"Use the FATE backend if you want polymorphic entrypoints.")
, ?SAME(higher_order_entrypoint, 2, 20,
, ?FATE_ERR(higher_order_entrypoint, 2, 20,
"The argument\n"
" f : (int) => int\n"
"of entrypoint 'apply' has a higher-order (contains function types) type.")
, ?SAME(higher_order_entrypoint_return, 2, 3,
, ?FATE_ERR(higher_order_entrypoint_return, 2, 3,
"The return type\n"
" (int) => int\n"
"of entrypoint 'add' is higher-order (contains function types).")
, ?SAME(missing_init_function, 1, 10,
, ?FATE_ERR(missing_init_function, 1, 10,
"Missing init function for the contract 'MissingInitFunction'.\n"
"The 'init' function can only be omitted if the state type is 'unit'.")
, ?SAME(parameterised_state, 3, 8,
, ?FATE_ERR(parameterised_state, 3, 8,
"The state type cannot be parameterized.")
, ?SAME(parameterised_event, 3, 12,
, ?FATE_ERR(parameterised_event, 3, 12,
"The event type cannot be parameterized.")
, ?SAME(polymorphic_aens_resolve, 4, 5,
, ?FATE_ERR(polymorphic_aens_resolve, 4, 5,
"Invalid return type of AENS.resolve:\n"
" 'a\n"
"It must be a string or a pubkey type (address, oracle, etc).")
, ?SAME(bad_aens_resolve, 6, 5,
, ?FATE_ERR(bad_aens_resolve, 6, 5,
"Invalid return type of AENS.resolve:\n"
" list(int)\n"
"It must be a string or a pubkey type (address, oracle, etc).")
, ?AEVM(polymorphic_compare, 4, 5,
"Cannot compare values of type\n"
" 'a\n"
"The AEVM only supports '==' on values of\n"
"- word type (int, bool, bits, address, oracle(_, _), etc)\n"
"- type string\n"
"- tuple or record of word type\n"
"Use FATE if you need to compare arbitrary types.")
, ?AEVM(complex_compare, 4, 5,
"Cannot compare values of type\n"
" (string * int)\n"
"The AEVM only supports '!=' on values of\n"
"- word type (int, bool, bits, address, oracle(_, _), etc)\n"
"- type string\n"
"- tuple or record of word type\n"
"Use FATE if you need to compare arbitrary types.")
, ?AEVM(complex_compare_leq, 4, 5,
"Cannot compare values of type\n"
" (int * int)\n"
"The AEVM only supports '=<' on values of\n"
"- word type (int, bool, bits, address, oracle(_, _), etc)\n"
"Use FATE if you need to compare arbitrary types.")
, ?AEVM(higher_order_compare, 4, 5,
"Cannot compare values of type\n"
" (int) => int\n"
"The AEVM only supports '<' on values of\n"
"- word type (int, bool, bits, address, oracle(_, _), etc)\n"
"Use FATE if you need to compare arbitrary types.")
, ?AEVM(unapplied_contract_call, 6, 19,
"The AEVM does not support unapplied contract call to\n"
" r : Remote\n"
"Use FATE if you need this.")
, ?AEVM(unapplied_named_arg_builtin, 4, 15,
"The AEVM does not support unapplied use of Oracle.register.\n"
"Use FATE if you need this.")
, ?AEVM(polymorphic_map_keys, 4, 34,
"Invalid map key type\n"
" 'a\n"
"Map keys cannot be polymorphic in the AEVM. Use FATE if you need this.")
, ?AEVM(higher_order_map_keys, 4, 42,
"Invalid map key type\n"
" (int) => int\n"
"Map keys cannot be higher-order.")
, ?SAME(polymorphic_query_type, 3, 5,
, ?FATE_ERR(polymorphic_query_type, 3, 5,
"Invalid oracle type\n"
" oracle('a, 'b)\n"
"The query type must not be polymorphic (contain type variables).")
, ?SAME(polymorphic_response_type, 3, 5,
, ?FATE_ERR(polymorphic_response_type, 3, 5,
"Invalid oracle type\n"
" oracle(string, 'r)\n"
"The response type must not be polymorphic (contain type variables).")
, ?SAME(higher_order_query_type, 3, 5,
, ?FATE_ERR(higher_order_query_type, 3, 5,
"Invalid oracle type\n"
" oracle((int) => int, string)\n"
"The query type must not be higher-order (contain function types).")
, ?SAME(higher_order_response_type, 3, 5,
, ?FATE_ERR(higher_order_response_type, 3, 5,
"Invalid oracle type\n"
" oracle(string, (int) => int)\n"
"The response type must not be higher-order (contain function types).")
, ?AEVM(higher_order_state, 3, 3,
"Invalid state type\n"
" {f : (int) => int}\n"
"The state cannot contain functions in the AEVM. Use FATE if you need this.")
, ?FATE(child_with_decls, 2, 14,
, ?FATE_ERR(child_with_decls, 2, 14,
"Missing definition of function 'f'.")
].
@ -985,7 +903,7 @@ validation_fails() ->
"Byte code contract is not payable, but source code contract is.">>]}].
validate(Contract1, Contract2) ->
case compile(fate, Contract1) of
case compile(Contract1) of
ByteCode = #{ fate_code := FCode } ->
FCode1 = aeb_fate_code:serialize(aeb_fate_code:strip_init_function(FCode)),
Source = aeso_test_utils:read_contract(Contract2),
@ -995,7 +913,7 @@ validate(Contract1, Contract2) ->
true -> [debug_mode];
false -> []
end ++
[{backend, fate}, {include, {file_system, [aeso_test_utils:contract_path()]}}]);
[{include, {file_system, [aeso_test_utils:contract_path()]}}]);
Error -> print_and_throw(Error)
end.

View File

@ -1,12 +1,4 @@
// This is a custom test file if you need to run a compiler without
// changing aeso_compiler_tests.erl
include "List.aes"
contract IntegerHolder =
type state = int
entrypoint init(x) = x
entrypoint get() = state
main contract Test =
stateful entrypoint f(c) = Chain.clone(ref=c, 123)
contract ShareTwo =
record state = {s1 : int, s2 : int}
entrypoint init() = {s1 = 0, s2 = 0}
stateful entrypoint buy() = ()