Feature/mkdocs with versioning (#333)

* docs: restructuring & introduction of mkdocs with versioning provided by mike

* docs: ad repositories section to sophia examples

* docs: refactoring and consistent naming of æternity

* docs: hint for new file destination

* docs: revert capital letter

* docs: accept proposed changes

* docs: fix anchors in stdlib
This commit is contained in:
Marco Walz 2021-08-27 16:46:18 +02:00 committed by GitHub
parent 3029bf31cb
commit 262452fb70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1419 additions and 1351 deletions

BIN
.docssite/docs/favicon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 KiB

7
.docssite/hook.py Normal file
View File

@ -0,0 +1,7 @@
import glob
import shutil
def pre_build(**kwargs):
for file in glob.glob('../docs/*.md'):
shutil.copy(file, 'docs')
shutil.copy('../CHANGELOG.md', 'docs')

55
.docssite/mkdocs.yml Normal file
View File

@ -0,0 +1,55 @@
site_name: æternity Sophia Language
plugins:
- search
- mkdocs-simple-hooks:
hooks:
on_pre_build: 'hook:pre_build'
repo_url: 'https://github.com/aeternity/aesophia'
edit_uri: ''
extra:
version:
provider: mike
theme:
favicon: favicon.png
name: material
custom_dir: overrides
language: en
palette:
- scheme: default
primary: pink
accent: pink
toggle:
icon: material/weather-night
name: Switch to dark mode
- scheme: slate
primary: pink
accent: pink
toggle:
icon: material/weather-sunny
name: Switch to light mode
features:
- content.tabs.link
- search.highlight
- search.share
- search.suggest
# Don't include MkDocs' JavaScript
include_search_page: false
search_index_only: true
markdown_extensions:
- admonition
- pymdownx.highlight
- pymdownx.superfences
- toc:
toc_depth: 3
nav:
- Introduction: index.md
- Syntax: sophia_syntax.md
- Features: sophia_features.md
- Standard library: sophia_stdlib.md
- Contract examples: sophia_examples.md
- Changelog: CHANGELOG.md

View File

@ -0,0 +1,8 @@
{% extends "base.html" %}
{% block outdated %}
You're not viewing the latest version.
<a href="{{ '../' ~ base_url }}">
<strong>Click here to go to latest.</strong>
</a>
{% endblock %}

25
.github/workflows/docs-develop.yml vendored Normal file
View File

@ -0,0 +1,25 @@
name: Publish development docs
on:
push:
branches: ['master']
jobs:
main:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- uses: actions/setup-python@v2
with:
python-version: 3.8
- uses: actions/cache@v2
with:
path: ~/.cache/pip3
key: ${{ runner.os }}-pip-${{ hashFiles('.github/workflows/requirements.txt') }}
- run: pip3 install -r .github/workflows/requirements.txt
- run: git config --global user.email "github-action@users.noreply.github.com"
- run: git config --global user.name "GitHub Action"
- run: |
cd .docssite
mike deploy --push master

26
.github/workflows/docs-release.yml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Publish release docs
on:
release:
types: [released]
jobs:
main:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- uses: actions/setup-python@v2
with:
python-version: 3.8
- uses: actions/cache@v2
with:
path: ~/.cache/pip3
key: ${{ runner.os }}-pip-${{ hashFiles('.github/workflows/requirements.txt') }}
- run: pip3 install -r .github/workflows/requirements.txt
- run: git config --global user.email "github-action@users.noreply.github.com"
- run: git config --global user.name "GitHub Action"
- run: echo "RELEASE_VERSION=${GITHUB_REF:10}" >> $GITHUB_ENV
- run: |
cd .docssite
mike deploy --push --update-aliases $RELEASE_VERSION latest

4
.github/workflows/requirements.txt vendored Normal file
View File

@ -0,0 +1,4 @@
mkdocs==1.2.1
mkdocs-simple-hooks==0.1.3
mkdocs-material==7.1.9
mike==1.0.1

2
.gitignore vendored
View File

@ -22,3 +22,5 @@ aesophia
.qcci
current_counterexample.eqc
test/contracts/test.aes
__pycache__
.docssite/docs/*.md

View File

@ -1,6 +1,6 @@
ISC License
Copyright (c) 2017, aeternity developers
Copyright (c) 2017, æternity developers
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above

View File

@ -5,13 +5,17 @@ This is the __sophia__ compiler for the æternity system which compiles contract
The compiler is currently being used three places
- [The command line compiler](https://github.com/aeternity/aesophia_cli)
- [The HTTP compiler](https://github.com/aeternity/aesophia_http)
- In [Aeternity node](https://github.com/aeternity/aeternity) tests
- In [æternity node](https://github.com/aeternity/aeternity) tests
## Documentation
* [Smart Contracts on aeternity Blockchain](https://github.com/aeternity/protocol/blob/master/contracts/contracts.md).
* [Sophia Documentation](docs/sophia.md).
* [Sophia Standard Library](docs/sophia_stdlib.md).
* [Introduction](docs/index.md)
* [Syntax](docs/sophia_syntax.md)
* [Features](docs/sophia_features.md)
* [Standard library](docs/sophia_stdlib.md)
* [Contract examples](docs/sophia_examples.md)
Additionally you can check out the [contracts section](https://github.com/aeternity/protocol/blob/master/contracts/contracts.md) of the æternity blockchain specification.
## Versioning
@ -26,5 +30,5 @@ Versioning should follow the [semantic versioning](https://semver.org/spec/v2.0.
The basic modules for interfacing the compiler:
* [aeso_compiler: the Sophia compiler](./docs/aeso_compiler.md)
* [aeso_aci: the ACI interface](./docs/aeso_aci.md)
* [aeso_compiler: the Sophia compiler](docs/aeso_compiler.md)
* [aeso_aci: the ACI interface](docs/aeso_aci.md)

12
docs/index.md Normal file
View File

@ -0,0 +1,12 @@
# Introduction
Sophia is a functional language designed for smart contract development. It is strongly typed and has
restricted mutable state.
Sophia is customized for smart contracts, which can be published
to a blockchain. Thus some features of conventional
languages, such as floating point arithmetic, are not present in Sophia, and
some [æternity blockchain](https://aeternity.com) specific primitives, constructions and types have been added.
!!! Note
- For rapid prototyping of smart contracts check out [AEstudio](https://studio.aepps.com/)!
- For playing around and diving deeper into the language itself check out the [REPL](https://repl.aeternity.io/)!

File diff suppressed because it is too large Load Diff

73
docs/sophia_examples.md Normal file
View File

@ -0,0 +1,73 @@
# Contract examples
## Crowdfunding
```sophia
/*
* A simple crowd-funding example
*/
contract FundMe =
record spend_args = { recipient : address,
amount : int }
record state = { contributions : map(address, int),
total : int,
beneficiary : address,
deadline : int,
goal : int }
stateful function spend(args : spend_args) =
Chain.spend(args.recipient, args.amount)
entrypoint init(beneficiary, deadline, goal) : state =
{ contributions = {},
beneficiary = beneficiary,
deadline = deadline,
total = 0,
goal = goal }
function is_contributor(addr) =
Map.member(addr, state.contributions)
stateful entrypoint contribute() =
if(Chain.block_height >= state.deadline)
spend({ recipient = Call.caller, amount = Call.value }) // Refund money
false
else
let amount =
switch(Map.lookup(Call.caller, state.contributions))
None => Call.value
Some(n) => n + Call.value
put(state{ contributions[Call.caller] = amount,
total @ tot = tot + Call.value })
true
stateful entrypoint withdraw() =
if(Chain.block_height < state.deadline)
abort("Cannot withdraw before deadline")
if(Call.caller == state.beneficiary)
withdraw_beneficiary()
elif(is_contributor(Call.caller))
withdraw_contributor()
else
abort("Not a contributor or beneficiary")
stateful function withdraw_beneficiary() =
require(state.total >= state.goal, "Project was not funded")
spend({recipient = state.beneficiary,
amount = Contract.balance })
stateful function withdraw_contributor() =
if(state.total >= state.goal)
abort("Project was funded")
let to = Call.caller
spend({recipient = to,
amount = state.contributions[to]})
put(state{ contributions @ c = Map.delete(to, c) })
```
## Repositories
This is a list with repositories that include smart contracts written in Sophia:
- [aepp-sophia-examples](https://github.com/aeternity/aepp-sophia-examples)
- A repository that contains lots of different examples. The functionality of these examples is - to some extent - also covered by tests written in JavaScript.

783
docs/sophia_features.md Normal file
View File

@ -0,0 +1,783 @@
# Features
## Contracts
The main unit of code in Sophia is the *contract*.
- A contract implementation, or simply a contract, is the code for a
smart contract and consists of a list of types, entrypoints and local
functions. Only the entrypoints can be called from outside the contract.
- A contract instance is an entity living on the block chain (or in a state
channel). Each instance has an address that can be used to call its
entrypoints, either from another contract or in a call transaction.
- A contract may define a type `state` encapsulating its local
state. When creating a new contract the `init` entrypoint is executed and the
state is initialized to its return value.
The language offers some primitive functions to interact with the blockchain and contracts.
Please refer to the [Chain](sophia_stdlib.md#chain), [Contract](sophia_stdlib.md#contract)
and the [Call](sophia_stdlib.md#call) namespaces in the documentation.
### Calling other contracts
To call a function in another contract you need the address to an instance of
the contract. The type of the address must be a contract type, which consists
of a number of type definitions and entrypoint declarations. For instance,
```sophia
// A contract type
contract interface VotingType =
entrypoint vote : string => unit
```
Now given contract address of type `VotingType` you can call the `vote`
entrypoint of that contract:
```sophia
contract VoteTwice =
entrypoint voteTwice(v : VotingType, alt : string) =
v.vote(alt)
v.vote(alt)
```
Contract calls take two optional named arguments `gas : int` and `value : int`
that lets you set a gas limit and provide tokens to a contract call. If omitted
the defaults are no gas limit and no tokens. Suppose there is a fee for voting:
```sophia
entrypoint voteTwice(v : VotingType, fee : int, alt : string) =
v.vote(value = fee, alt)
v.vote(value = fee, alt)
```
Named arguments can be given in any order.
Note that reentrant calls are not permitted. In other words, when calling
another contract it cannot call you back (directly or indirectly).
To construct a value of a contract type you can give a contract address literal
(for instance `ct_2gPXZnZdKU716QBUFKaT4VdBZituK93KLvHJB3n4EnbrHHw4Ay`), or
convert an account address to a contract address using `Address.to_contract`.
Note that if the contract does not exist, or it doesn't have the entrypoint, or
the type of the entrypoint does not match the stated contract type, the call
fails.
To recover the underlying `address` of a contract instance there is a field
`address : address`. For instance, to send tokens to the voting contract (given that it is payable)
without calling it you can write
```sophia
entrypoint pay(v : VotingType, amount : int) =
Chain.spend(v.address, amount)
```
### Protected contract calls
If a contract call fails for any reason (for instance, the remote contract
crashes or runs out of gas, or the entrypoint doesn't exist or has the wrong
type) the parent call also fails. To make it possible to recover from failures,
contract calls takes a named argument `protected : bool` (default `false`).
The protected argument must be a literal boolean, and when set to `true`
changes the type of the contract call, wrapping the result in an `option` type.
If the call fails the result is `None`, otherwise it's `Some(r)` where `r` is
the return value of the call.
```sophia
contract interface VotingType =
entrypoint : vote : string => unit
contract Voter =
entrypoint tryVote(v : VotingType, alt : string) =
switch(v.vote(alt, protected = true) : option(unit))
None => "Voting failed"
Some(_) => "Voting successful"
```
Any gas that was consumed by the contract call before the failure stays
consumed, which means that in order to protect against the remote contract
running out of gas it is necessary to set a gas limit using the `gas` argument.
However, note that errors that would normally consume all the gas in the
transaction still only uses up the gas spent running the contract.
### Contract factories and child contracts
Since the version 6.0.0 Sophia supports deploying contracts by other
contracts. This can be done in two ways:
- Contract cloning via [`Chain.clone`](sophia_stdlib.md#clone)
- Direct deploy via [`Chain.create`](sophia_stdlib.md#create)
These functions take variable number of arguments that must match the created
contract's `init` function. Beside that they take some additional named
arguments please refer to their documentation for the details.
While `Chain.clone` requires only a `contract interface` and a living instance
of a given contract on the chain, `Chain.create` needs a full definition of a
to-create contract defined by the standard `contract` syntax, for example
```sophia
contract IntHolder =
type state = int
entrypoint init(x) = x
entrypoint get() = state
main contract IntHolderFactory =
stateful entrypoint new(x : int) : IntHolder =
let ih = Chain.create(x) : IntHolder
ih
```
In case of a presence of child contracts (`IntHolder` in this case), the main
contract must be pointed out with the `main` keyword as shown in the example.
## Mutable state
Sophia does not have arbitrary mutable state, but only a limited form of state
associated with each contract instance.
- Each contract defines a type `state` encapsulating its mutable state.
The type `state` defaults to the `unit`.
- The initial state of a contract is computed by the contract's `init`
function. The `init` function is *pure* and returns the initial state as its
return value.
If the type `state` is `unit`, the `init` function defaults to returning the value `()`.
At contract creation time, the `init` function is executed and
its result is stored as the contract state.
- The value of the state is accessible from inside the contract
through an implicitly bound variable `state`.
- State updates are performed by calling a function `put : state => unit`.
- Aside from the `put` function (and similar functions for transactions
and events), the language is purely functional.
- Functions modifying the state need to be annotated with the `stateful` keyword (see below).
To make it convenient to update parts of a deeply nested state Sophia
provides special syntax for map/record updates.
### Stateful functions
Top-level functions and entrypoints must be annotated with the
`stateful` keyword to be allowed to affect the state of the running contract.
For instance,
```sophia
stateful entrypoint set_state(s : state) =
put(s)
```
Without the `stateful` annotation the compiler does not allow the call to
`put`. A `stateful` annotation is required to
* Use a stateful primitive function. These are
- `put`
- `Chain.spend`
- `Oracle.register`
- `Oracle.query`
- `Oracle.respond`
- `Oracle.extend`
- `AENS.preclaim`
- `AENS.claim`
- `AENS.transfer`
- `AENS.revoke`
- `AENS.update`
* Call a `stateful` function in the current contract
* Call another contract with a non-zero `value` argument.
A `stateful` annotation *is not* required to
* Read the contract state.
* Issue an event using the `event` function.
* Call another contract with `value = 0`, even if the called function is stateful.
## Payable
### Payable contracts
A concrete contract is by default *not* payable. Any attempt at spending to such
a contract (either a `Chain.spend` or a normal spend transaction) will fail. If a
contract shall be able to receive funds in this way it has to be declared `payable`:
```sophia
// A payable contract
payable contract ExampleContract =
stateful entrypoint do_stuff() = ...
```
If in doubt, it is possible to check if an address is payable using
`Address.is_payable(addr)`.
### Payable entrypoints
A contract entrypoint is by default *not* payable. Any call to such a function
(either a [Remote call](#calling-other-contracts) or a contract call transaction)
that has a non-zero `value` will fail. Contract entrypoints that should be called
with a non-zero value should be declared `payable`.
```sophia
payable stateful entrypoint buy(to : address) =
if(Call.value > 42)
transfer_item(to)
else
abort("Value too low")
```
Note: In the æternity VM (AEVM) contracts and entrypoints were by default
payable until the Lima release.
## Namespaces
Code can be split into libraries using the `namespace` construct. Namespaces
can appear at the top-level and can contain type and function definitions, but
not entrypoints. Outside the namespace you can refer to the (non-private) names
by qualifying them with the namespace (`Namespace.name`).
For example,
```sophia
namespace Library =
type number = int
function inc(x : number) : number = x + 1
contract MyContract =
entrypoint plus2(x) : Library.number =
Library.inc(Library.inc(x))
```
Functions in namespaces have access to the same environment (including the
`Chain`, `Call`, and `Contract`, builtin namespaces) as function in a contract,
with the exception of `state`, `put` and `Chain.event` since these are
dependent on the specific state and event types of the contract.
## Splitting code over multiple files
Code from another file can be included in a contract using an `include`
statement. These must appear at the top-level (outside the main contract). The
included file can contain one or more namespaces and abstract contracts. For
example, if the file `library.aes` contains
```sophia
namespace Library =
function inc(x) = x + 1
```
you can use it from another file using an `include`:
```sophia
include "library.aes"
contract MyContract =
entrypoint plus2(x) = Library.inc(Library.inc(x))
```
This behaves as if the contents of `library.aes` was textually inserted into
the file, except that error messages will refer to the original source
locations. The language will try to include each file at most one time automatically,
so even cyclic includes should be working without any special tinkering.
## Standard library
Sophia offers [standard library](sophia_stdlib.md) which exposes some
primitive operations and some higher level utilities. The builtin
namespaces like `Chain`, `Contract`, `Map`
are included by default and are supported internally by the compiler.
Others like `List`, `Frac`, `Option` need to be manually included using the
`include` directive. For example
```sophia
include "List.aes"
include "Pair.aes"
-- Map is already there!
namespace C =
entrypoint keys(m : map('a, 'b)) : list('a) =
List.map(Pair.fst, (Map.to_list(m)))
```
## Types
Sophia has the following types:
| Type | Description | Example |
|----------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| int | A 2-complement integer | ```-1``` |
| address | æternity address, 32 bytes | ```Call.origin``` |
| bool | A Boolean | ```true``` |
| bits | A bit field | ```Bits.none``` |
| bytes(n) | A byte array with `n` bytes | ```#fedcba9876543210``` |
| string | An array of bytes | ```"Foo"``` |
| list | A homogeneous immutable singly linked list. | ```[1, 2, 3]``` |
| ('a, 'b) => 'c | A function. Parentheses can be skipped if there is only one argument | ```(x : int, y : int) => x + y``` |
| tuple | An ordered heterogeneous array | ```(42, "Foo", true)``` |
| record | An immutable key value store with fixed key names and typed values | ``` record balance = { owner: address, value: int } ``` |
| map | An immutable key value store with dynamic mapping of keys of one type to values of one type | ```type accounts = map(string, address)``` |
| option('a) | An optional value either None or Some('a) | ```Some(42)``` |
| state | A user defined type holding the contract state | ```record state = { owner: address, magic_key: bytes(4) }``` |
| event | An append only list of blockchain events (or log entries) | ```datatype event = EventX(indexed int, string)``` |
| hash | A 32-byte hash - equivalent to `bytes(32)` | |
| signature | A signature - equivalent to `bytes(64)` | |
| Chain.ttl | Time-to-live (fixed height or relative to current block) | ```FixedTTL(1050)``` ```RelativeTTL(50)``` |
| oracle('a, 'b) | And oracle answering questions of type 'a with answers of type 'b | ```Oracle.register(acct, qfee, ttl)``` |
| oracle_query('a, 'b) | A specific oracle query | ```Oracle.query(o, q, qfee, qttl, rttl)``` |
| contract | A user defined, typed, contract address | ```function call_remote(r : RemoteContract) = r.fun()``` |
## Literals
| Type | Constant/Literal example(s) |
| ---------- | ------------------------------- |
| int | `-1`, `2425`, `4598275923475723498573485768` |
| address | `ak_2gx9MEFxKvY9vMG5YnqnXWv1hCsX7rgnfvBLJS4aQurustR1rt` |
| bool | `true`, `false` |
| bits | `Bits.none`, `Bits.all` |
| bytes(8) | `#fedcba9876543210` |
| string | `"This is a string"` |
| list | `[1, 2, 3]`, `[(true, 24), (false, 19), (false, -42)]` |
| tuple | `(42, "Foo", true)` |
| record | `{ owner = Call.origin, value = 100000000 }` |
| map | `{["foo"] = 19, ["bar"] = 42}`, `{}` |
| option(int) | `Some(42)`, `None` |
| state | `state{ owner = Call.origin, magic_key = #a298105f }` |
| event | `EventX(0, "Hello")` |
| hash | `#000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f` |
| signature | `#000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f` |
| Chain.ttl | `FixedTTL(1050)`, `RelativeTTL(50)` |
| oracle('a, 'b) | `ok_2YNyxd6TRJPNrTcEDCe9ra59SVUdp9FR9qWC5msKZWYD9bP9z5` |
| oracle_query('a, 'b) | `oq_2oRvyowJuJnEkxy58Ckkw77XfWJrmRgmGaLzhdqb67SKEL1gPY` |
| contract | `ct_Ez6MyeTMm17YnTnDdHTSrzMEBKmy7Uz2sXu347bTDPgVH2ifJ` |
## Arithmetic
Sophia integers (`int`) are represented by 256-bit (AEVM) or arbitrary-sized (FATE) signed words and supports the following
arithmetic operations:
- addition (`x + y`)
- subtraction (`x - y`)
- multiplication (`x * y`)
- division (`x / y`), truncated towards zero
- remainder (`x mod y`), satisfying `y * (x / y) + x mod y == x` for non-zero `y`
- exponentiation (`x ^ y`)
All operations are *safe* with respect to overflow and underflow. On AEVM they behave as the corresponding
operations on arbitrary-size integers and fail with `arithmetic_error` if the
result cannot be represented by a 256-bit signed word. For example, `2 ^ 255`
fails rather than wrapping around to -2²⁵⁵.
The division and modulo operations also throw an arithmetic error if the
second argument is zero.
## Bit fields
Sophia integers do not support bit arithmetic. Instead there is a separate
type `bits`. See the standard library [documentation](sophia_stdlib.md#bits).
On the AEVM a bit field is represented by a 256-bit word and reading or writing
a bit outside the 0..255 range fails with an `arithmetic_error`. On FATE a bit
field can be of arbitrary size (but it is still represented by the
corresponding integer, so setting very high bits can be expensive).
## Type aliases
Type aliases can be introduced with the `type` keyword and can be
parameterized. For instance
```sophia
type number = int
type string_map('a) = map(string, 'a)
```
A type alias and its definition can be used interchangeably. Sophia does not support
higher-kinded types, meaning that following type alias is invalid: `type wrap('f, 'a) = 'f('a)`
## Algebraic data types
Sophia supports algebraic data types (variant types) and pattern matching. Data
types are declared by giving a list of constructors with
their respective arguments. For instance,
```sophia
datatype one_or_both('a, 'b) = Left('a) | Right('b) | Both('a, 'b)
```
Elements of data types can be pattern matched against, using the `switch` construct:
```sophia
function get_left(x : one_or_both('a, 'b)) : option('a) =
switch(x)
Left(x) => Some(x)
Right(_) => None
Both(x, _) => Some(x)
```
or directly in the left-hand side:
```sophia
function
get_left : one_or_both('a, 'b) => option('a)
get_left(Left(x)) = Some(x)
get_left(Right(_)) = None
get_left(Both(x, _)) = Some(x)
```
*NOTE: Data types cannot currently be recursive.*
## Lists
A Sophia list is a dynamically sized, homogenous, immutable, singly
linked list. A list is constructed with the syntax `[1, 2, 3]`. The
elements of a list can be any of datatype but they must have the same
type. The type of lists with elements of type `'e` is written
`list('e)`. For example we can have the following lists:
```sophia
[1, 33, 2, 666] : list(int)
[(1, "aaa"), (10, "jjj"), (666, "the beast")] : list(int * string)
[{[1] = "aaa", [10] = "jjj"}, {[5] = "eee", [666] = "the beast"}] : list(map(int, string))
```
New elements can be prepended to the front of a list with the `::`
operator. So `42 :: [1, 2, 3]` returns the list `[42, 1, 2, 3]`. The
concatenation operator `++` appends its second argument to its first
and returns the resulting list. So concatenating two lists
`[1, 22, 33] ++ [10, 18, 55]` returns the list `[1, 22, 33, 10, 18, 55]`.
Sophia supports list comprehensions known from languages like Python, Haskell or Erlang.
Example syntax:
```sophia
[x + y | x <- [1,2,3,4,5], let k = x*x, if (k > 5), y <- [k, k+1, k+2]]
// yields [12,13,14,20,21,22,30,31,32]
```
Lists can be constructed using the range syntax using special `..` operator:
```sophia
[1..4] == [1,2,3,4]
```
The ranges are always ascending and have step equal to 1.
Please refer to the [standard library](sophia_stdlib.md#list) for the predefined functionalities.
## Maps and records
A Sophia record type is given by a fixed set of fields with associated,
possibly different, types. For instance
```sophia
record account = { name : string,
balance : int,
history : list(transaction) }
```
Maps, on the other hand, can contain an arbitrary number of key-value bindings,
but of a fixed type. The type of maps with keys of type `'k` and values of type
`'v` is written `map('k, 'v)`. The key type can be any type that does not
contain a map or a function type.
Please refer to the [standard library](sophia_stdlib.md#map) for the predefined functionalities.
### Constructing maps and records
A value of record type is constructed by giving a value for each of the fields.
For the example above,
```sophia
function new_account(name) =
{name = name, balance = 0, history = []}
```
Maps are constructed similarly, with keys enclosed in square brackets
```sophia
function example_map() : map(string, int) =
{["key1"] = 1, ["key2"] = 2}
```
The empty map is written `{}`.
### Accessing values
Record fields access is written `r.f` and map lookup `m[k]`. For instance,
```sophia
function get_balance(a : address, accounts : map(address, account)) =
accounts[a].balance
```
Looking up a non-existing key in a map results in contract execution failing. A
default value to return for non-existing keys can be provided using the syntax
`m[k = default]`. See also `Map.member` and `Map.lookup` below.
### Updating a value
Record field updates are written `r{f = v}`. This creates a new record value
which is the same as `r`, but with the value of the field `f` replaced by `v`.
Similarly, `m{[k] = v}` constructs a map with the same values as `m` except
that `k` maps to `v`. It makes no difference if `m` has a mapping for `k` or
not.
It is possible to give a name to the old value of a field or mapping in an
update: instead of `acc{ balance = acc.balance + 100 }` it is possible to write
`acc{ balance @ b = b + 100 }`, binding `b` to `acc.balance`. When giving a
name to a map value (`m{ [k] @ x = v }`), the corresponding key must be present
in the map or execution fails, but a default value can be provided:
`m{ [k = default] @ x = v }`. In this case `x` is bound to `default` if
`k` is not in the map.
Updates can be nested:
```sophia
function clear_history(a : address, accounts : map(address, account)) : map(address, account) =
accounts{ [a].history = [] }
```
This is equivalent to `accounts{ [a] @ acc = acc{ history = [] } }` and thus
requires `a` to be present in the accounts map. To have `clear_history` create
an account if `a` is not in the map you can write (given a function `empty_account`):
```sophia
accounts{ [a = empty_account()].history = [] }
```
### Map implementation
Internally in the VM maps are implemented as hash maps and support fast lookup
and update. Large maps can be stored in the contract state and the size of the
map does not contribute to the gas costs of a contract call reading or updating
it.
## Strings
There is a builtin type `string`, which can be seen as an array of bytes.
Strings can be compared for equality (`==`, `!=`), used as keys in maps and
records, and used in builtin functions `String.length`, `String.concat` and
the hash functions described below.
Please refer to the `String` [library documentation](sophia_stdlib.md#string).
## Chars
There is a builtin type `char` (the underlying representation being an integer),
mainly used to manipulate strings via `String.to_list`/`String.from_list`.
Characters can also be introduced as character literals (`'x', '+', ...).
Please refer to the `Char` [library documentation](sophia_stdlib.md#char).
## Byte arrays
Byte arrays are fixed size arrays of 8-bit integers. They are described in hexadecimal system,
for example the literal `#cafe` creates a two-element array of bytes `ca` (202) and `fe` (254)
and thus is a value of type `bytes(2)`.
Please refer to the `Bytes` [library documentation](sophia_stdlib.md#bytes).
## Cryptographic builtins
Libraries [Crypto](sophia_stdlib.md#crypto) and [String](sophia_stdlib.md#string) provide functions to
hash objects, verify signatures etc. The `hash` is a type alias for `bytes(32)`.
## Authorization interface
When a Generalized account is authorized, the authorization function needs
access to the transaction and the transaction hash for the wrapped transaction. (A `GAMetaTx`
wrapping a transaction.) The transaction and the transaction hash is available in the primitive
`Auth.tx` and `Auth.tx_hash` respectively, they are *only* available during authentication if invoked by a
normal contract call they return `None`.
## Oracle interface
You can attach an oracle to the current contract and you can interact with oracles
through the Oracle interface.
For a full description of how Oracle works see
[Oracles](https://github.com/aeternity/protocol/blob/master/oracles/oracles.md#oracles).
For a functionality documentation refer to the [standard library](sophia_stdlib.md#oracle).
### Example
Example for an oracle answering questions of type `string` with answers of type `int`:
```sophia
contract Oracles =
stateful entrypoint registerOracle(acct : address,
sign : signature, // Signed network id + oracle address + contract address
qfee : int,
ttl : Chain.ttl) : oracle(string, int) =
Oracle.register(acct, signature = sign, qfee, ttl)
entrypoint queryFee(o : oracle(string, int)) : int =
Oracle.query_fee(o)
payable stateful entrypoint createQuery(o : oracle_query(string, int),
q : string,
qfee : int,
qttl : Chain.ttl,
rttl : int) : oracle_query(string, int) =
require(qfee =< Call.value, "insufficient value for qfee")
Oracle.query(o, q, qfee, qttl, RelativeTTL(rttl))
stateful entrypoint extendOracle(o : oracle(string, int),
ttl : Chain.ttl) : unit =
Oracle.extend(o, ttl)
stateful entrypoint signExtendOracle(o : oracle(string, int),
sign : signature, // Signed network id + oracle address + contract address
ttl : Chain.ttl) : unit =
Oracle.extend(o, signature = sign, ttl)
stateful entrypoint respond(o : oracle(string, int),
q : oracle_query(string, int),
sign : signature, // Signed network id + oracle query id + contract address
r : int) =
Oracle.respond(o, q, signature = sign, r)
entrypoint getQuestion(o : oracle(string, int),
q : oracle_query(string, int)) : string =
Oracle.get_question(o, q)
entrypoint hasAnswer(o : oracle(string, int),
q : oracle_query(string, int)) =
switch(Oracle.get_answer(o, q))
None => false
Some(_) => true
entrypoint getAnswer(o : oracle(string, int),
q : oracle_query(string, int)) : option(int) =
Oracle.get_answer(o, q)
```
### Sanity checks
When an Oracle literal is passed to a contract, no deep checks are performed.
For extra safety [Oracle.check](sophia_stdlib.md#check) and [Oracle.check_query](sophia_stdlib.md#check_query)
functions are provided.
## AENS interface
Contracts can interact with the
[æternity naming system](https://github.com/aeternity/protocol/blob/master/AENS.md).
For this purpose the [AENS](sophia_stdlib.md#aens) library was exposed.
### Example
In this example we assume that the name `name` already exists, and is owned by
an account with address `addr`. In order to allow a contract `ct` to handle
`name` the account holder needs to create a
[signature](#delegation-signature) `sig` of `addr | name.hash | ct.address`.
Armed with this information we can for example write a function that extends
the name if it expires within 1000 blocks:
```sophia
stateful entrypoint extend_if_necessary(addr : address, name : string, sig : signature) =
switch(AENS.lookup(name))
None => ()
Some(AENS.Name(_, FixedTTL(expiry), _)) =>
if(Chain.block_height + 1000 > expiry)
AENS.update(addr, name, Some(RelativeTTL(50000)), None, None, signature = sig)
```
And we can write functions that adds and removes keys from the pointers of the
name:
```sophia
stateful entrypoint add_key(addr : address, name : string, key : string,
pt : AENS.pointee, sig : signature) =
switch(AENS.lookup(name))
None => ()
Some(AENS.Name(_, _, ptrs)) =>
AENS.update(addr, name, None, None, Some(ptrs{[key] = pt}), signature = sig)
stateful entrypoint delete_key(addr : address, name : string,
key : string, sig : signature) =
switch(AENS.lookup(name))
None => ()
Some(AENS.Name(_, _, ptrs)) =>
let ptrs = Map.delete(key, ptrs)
AENS.update(addr, name, None, None, Some(ptrs), signature = sig)
```
*Note:* From the Iris hardfork more strict rules apply for AENS pointers, when
a Sophia contract lookup or update (bad) legacy pointers, the bad keys are
automatically removed so they will not appear in the pointers map.
## Events
Sophia contracts log structured messages to an event log in the resulting
blockchain transaction. The event log is quite similar to [Events in
Solidity](https://solidity.readthedocs.io/en/v0.4.24/contracts.html#events).
Events are further discussed in the [protocol](https://github.com/aeternity/protocol/blob/master/contracts/events.md).
To use events a contract must declare a datatype `event`, and events are then
logged using the `Chain.event` function:
```sophia
datatype event
= Event1(int, int, string)
| Event2(string, address)
Chain.event(e : event) : unit
```
The event can have 0-3 *indexed* fields, and an optional *payload* field. A
field is indexed if it fits in a 32-byte word, i.e.
- `bool`
- `int`
- `bits`
- `address`
- `oracle(_, _)`
- `oracle_query(_, _)`
- contract types
- `bytes(n)` for `n` ≤ 32, in particular `hash`
The payload field must be either a string or a byte array of more than 32 bytes.
The fields can appear in any order.
*NOTE:* Indexing is not part of the core æternity node.
Events are emitted by using the `Chain.event` function. The following function
will emit one Event of each kind in the example.
```sophia
entrypoint emit_events() : () =
Chain.event(Event1(42, 34, "foo"))
Chain.event(Event2("This is not indexed", Contract.address))
```
### Argument order
It is only possible to have one (1) `string` parameter in the event, but it can
be placed in any position (and its value will end up in the `data` field), i.e.
```sophia
AnotherEvent(string, indexed address)
...
Chain.event(AnotherEvent("This is not indexed", Contract.address))
```
would yield exactly the same result in the example above!
## Compiler pragmas
To enforce that a contract is only compiled with specific versions of the
Sophia compiler, you can give one or more `@compiler` pragmas at the
top-level (typically at the beginning) of a file. For instance, to enforce that
a contract is compiled with version 4.3 of the compiler you write
```sophia
@compiler >= 4.3
@compiler < 4.4
```
Valid operators in compiler pragmas are `<`, `=<`, `==`, `>=`, and `>`. Version
numbers are given as a sequence of non-negative integers separated by dots.
Trailing zeros are ignored, so `4.0.0 == 4`. If a constraint is violated an
error is reported and compilation fails.
## Exceptions
Contracts can fail with an (uncatchable) exception using the built-in function
```sophia
abort(reason : string) : 'a
```
Calling abort causes the top-level call transaction to return an error result
containing the `reason` string. Only the gas used up to and including the abort
call is charged. This is different from termination due to a crash which
consumes all available gas.
For convenience the following function is also built-in:
```sophia
function require(b : bool, err : string) =
if(!b) abort(err)
```
## Delegation signature
Some chain operations (`Oracle.<operation>` and `AENS.<operation>`) have an
optional delegation signature. This is typically used when a user/accounts
would like to allow a contract to act on it's behalf. The exact data to be
signed varies for the different operations, but in all cases you should prepend
the signature data with the `network_id` (`ae_mainnet` for the æternity mainnet, etc.).

View File

@ -12,40 +12,40 @@ in the scope and do not need any actions to be used, while the others require so
The out-of-the-box namespaces are:
- [Bits](#Bits)
- [Bytes](#Bytes)
- [Char](#Char)
- [Int](#Int)
- [Map](#Map)
- [Address](#Address)
- [Crypto](#Crypto)
- [Auth](#Auth)
- [Oracle](#Oracle)
- [AENS](#AENS)
- [Contract](#Contract)
- [Call](#Call)
- [Chain](#Chain)
- [Bits](#bits)
- [Bytes](#bytes)
- [Char](#char)
- [Int](#int)
- [Map](#map)
- [Address](#address)
- [Crypto](#crypto)
- [Auth](#auth)
- [Oracle](#oracle)
- [AENS](#aens)
- [Contract](#contract)
- [Call](#call)
- [Chain](#chain)
The following ones need to be included as regular files with `.aes` suffix, for example
```
include "List.aes"
```
- [List](#List)
- [Option](#Option)
- [String](#String)
- [Func](#Func)
- [Pair](#Pair)
- [Triple](#Triple)
- [BLS12_381](#BLS12_381)
- [Frac](#Frac)
- [List](#list)
- [Option](#option)
- [String](#string)
- [Func](#func)
- [Pair](#pair)
- [Triple](#triple)
- [BLS12_381](bls12_381)
- [Frac](#frac)
- [Set](#set-stdlib)
# Builtin namespaces
## Builtin namespaces
They are available without any explicit includes.
## Bits
### Bits
#### none
```
@ -119,7 +119,7 @@ Bits.difference(a : bits, b : bits) : bits
Each bit is true if and only if it was 1 in `a` and 0 in `b`
## Bytes
### Bytes
#### to_int
```
@ -153,7 +153,7 @@ Bytes.split(a : bytes(m + n)) : bytes(m) * bytes(n)
Splits a byte array at given index
## Char
### Char
#### to_int
```
@ -172,7 +172,7 @@ Char.from_int(i : int) : option(char)
Opposite of [to_int](#to_int). Returns `None` if the integer doesn't correspond to a single (normalized) codepoint.
## Int
### Int
#### to_str
```
@ -182,7 +182,7 @@ Int.to_str : int => string
Casts integer to string using decimal representation
## Map
### Map
#### lookup
`Map.lookup(k : 'k, m : map('k, 'v)) : option('v)`
@ -229,7 +229,7 @@ Turns a list of pairs of form `(key, value)` into a map
## Address
### Address
#### to_str
```
@ -271,7 +271,7 @@ Address.to_contract(a : address) : C
Cast address to contract type C (where `C` is a contract)
## Crypto
### Crypto
#### sha3
```
@ -328,7 +328,7 @@ Crypto.verify_sig_secp256k1(msg : hash, pubkey : bytes(64), sig : bytes(64)) : b
<!-- TODO -->
## Auth
### Auth
#### tx
@ -368,7 +368,7 @@ Auth.tx_hash : option(hash)
Gets the transaction hash during authentication.
## Oracle
### Oracle
#### register
```
@ -380,7 +380,7 @@ Registers new oracle answering questions of type `'a` with answers of type `'b`.
* The `acct` is the address of the oracle to register (can be the same as the contract).
* `signature` is a signature proving that the contract is allowed to register the account -
the `network id` + `account address` + `contract address` (concatenated as byte arrays) is
[signed](./sophia.md#delegation-signature) with the
[signed](./sophia_features.md#delegation-signature) with the
private key of the account, proving you have the private key of the oracle to be. If the
address is the same as the contract `sign` is ignored and can be left out entirely.
* The `qfee` is the minimum query fee to be paid by a user when asking a question of the oracle.
@ -413,7 +413,7 @@ Responds to the question `q` on `o`.
Unless the contract address is the same as the oracle address the `signature`
(which is an optional, named argument)
needs to be provided. Proving that we have the private key of the oracle by
[signing](./sophia.md#delegation-signature)
[signing](./sophia_features.md#delegation-signature)
the `network id` + `oracle query id` + `contract address`
@ -481,25 +481,25 @@ Oracle.check_query(o : oracle('a, 'b), q : oracle_query('a, 'b)) : bool
It returns `true` iff the oracle query exist and has the expected type.
## AENS
### AENS
The following functionality is available for interacting with the Aeternity
Naming System (AENS).
The following functionality is available for interacting with the æternity
naming system (AENS).
If `owner` is equal to `Contract.address` the signature `signature` is
ignored, and can be left out since it is a named argument. Otherwise we need
a signature to prove that we are allowed to do AENS operations on behalf of
`owner`. The [signature is tied to a network id](https://github.com/aeternity/protocol/blob/iris/consensus/consensus.md#transaction-signature),
i.e. the signature material should be prefixed by the network id.
### Types
#### Types
#### name
##### name
```
datatype name = Name(address, Chain.ttl, map(string, AENS.pointee))
```
#### pointee
##### pointee
```
datatype pointee = AccountPt(address) | OraclePt(address)
@ -507,9 +507,9 @@ datatype pointee = AccountPt(address) | OraclePt(address)
```
### Functions
#### Functions
#### resolve
##### resolve
```
AENS.resolve(name : string, key : string) : option('a)
```
@ -520,7 +520,7 @@ associated with this name (for instance `"account_pubkey"`). The return type
type checked against this type at run time.
#### lookup
##### lookup
```
AENS.lookup(name : string) : option(AENS.name)
```
@ -534,53 +534,53 @@ let Some(Name(owner, FixedTTL(expiry), ptrs)) = AENS.lookup("example.chain")
```
#### preclaim
##### preclaim
```
AENS.preclaim(owner : address, commitment_hash : hash, <signature : signature>) : unit
```
The [signature](./sophia.md#delegation-signature) should be over
The [signature](./sophia_features.md#delegation-signature) should be over
`network id` + `owner address` + `Contract.address` (concatenated as byte arrays).
#### claim
##### claim
```
AENS.claim(owner : address, name : string, salt : int, name_fee : int, <signature : signature>) : unit
```
The [signature](./sophia.md#delegation-signature) should be over
The [signature](./sophia_features.md#delegation-signature) should be over
`network id` + `owner address` + `name_hash` + `Contract.address`
(concatenated as byte arrays)
using the private key of the `owner` account for signing.
#### transfer
##### transfer
```
AENS.transfer(owner : address, new_owner : address, name : string, <signature : signature>) : unit
```
Transfers name to the new owner.
The [signature](./sophia.md#delegation-signature) should be over
The [signature](./sophia_features.md#delegation-signature) should be over
`network id` + `owner address` + `name_hash` + `Contract.address`
(concatenated as byte arrays)
using the private key of the `owner` account for signing.
#### revoke
##### revoke
```
AENS.revoke(owner : address, name : string, <signature : signature>) : unit
```
Revokes the name to extend the ownership time.
The [signature](./sophia.md#delegation-signature) should be over
The [signature](./sophia_features.md#delegation-signature) should be over
`network id` + `owner address` + `name_hash` + `Contract.address`
(concatenated as byte arrays)
using the private key of the `owner` account for signing.
#### update
##### update
```
AENS.update(owner : address, name : string, expiry : option(Chain.ttl), client_ttl : option(int),
new_ptrs : map(string, AENS.pointee), <signature : signature>) : unit
@ -591,7 +591,7 @@ will not be updated, for example if `None` is passed as `expiry` the expiry
block of the name is not changed.
## Contract
### Contract
Values related to the current contract
@ -619,7 +619,7 @@ Contract.balance : int
Amount of coins in the contract account
## Call
### Call
Values related to the call to the current contract
@ -670,13 +670,13 @@ Call.gas_left() : int
The amount of gas left for the current call.
## Chain
### Chain
Values and functions related to the chain itself and other entities that live on it.
### Types
#### Types
#### tx
##### tx
```
record tx = { paying_for : option(Chain.paying_for_tx)
, ga_metas : list(Chain.ga_meta_tx)
@ -686,18 +686,18 @@ record tx = { paying_for : option(Chain.paying_for_tx)
, tx : Chain.base_tx }
```
#### ga_meta_tx
##### ga_meta_tx
```
datatype ga_meta_tx = GAMetaTx(address, int)
```
#### paying_for_tx
##### paying_for_tx
```
datatype paying_for_tx = PayingForTx(address, int)
```
#### base_tx
##### base_tx
```
datatype base_tx = SpendTx(address, int, string)
| OracleRegisterTx | OracleQueryTx | OracleResponseTx | OracleExtendTx
@ -711,9 +711,9 @@ datatype base_tx = SpendTx(address, int, string)
```
### Functions
#### Functions
#### balance
##### balance
```
Chain.balance(a : address) : int
```
@ -721,7 +721,7 @@ Chain.balance(a : address) : int
The balance of account `a`.
#### block_hash
##### block_hash
```
Chain.block_hash(h : int) : option(bytes(32))
```
@ -734,7 +734,7 @@ allowed height. From FATE VM version 2 (IRIS) it will return the block hash of
the current generation.
#### block_height
##### block_height
```
Chain.block_height : int"
```
@ -742,7 +742,7 @@ Chain.block_height : int"
The height of the current block (i.e. the block in which the current call will be included).
#### coinbase
##### coinbase
```
Chain.coinbase : address
```
@ -750,7 +750,7 @@ Chain.coinbase : address
The address of the account that mined the current block.
#### timestamp
##### timestamp
```
Chain.timestamp : int
```
@ -758,7 +758,7 @@ Chain.timestamp : int
The timestamp of the current block.
#### difficulty
##### difficulty
```
Chain.difficulty : int
```
@ -766,7 +766,7 @@ Chain.difficulty : int
The difficulty of the current block.
#### gas
##### gas
```
Chain.gas_limit : int
```
@ -774,7 +774,7 @@ Chain.gas_limit : int
The gas limit of the current block.
#### bytecode_hash
##### bytecode_hash
```
Chain.bytecode_hash : 'c => option(hash)
```
@ -785,7 +785,7 @@ instantiated with a contract. The charged gas increases linearly to
the size of the serialized bytecode of the deployed contract.
#### create
##### create
```
Chain.create(value : int, ...) => 'c
```
@ -837,7 +837,7 @@ main contract Market =
The typechecker must be certain about the created contract's type, so it is
worth writing it explicitly as shown in the example.
#### clone
##### clone
```
Chain.clone : ( ref : 'c, gas : int, value : int, protected : bool, ...
) => if(protected) option('c) else 'c
@ -895,18 +895,18 @@ implementation of the `init` function does not actually return `state`, but
calls `put` instead. Moreover, FATE prevents even handcrafted calls to `init`.
#### event
##### event
```
Chain.event(e : event) : unit
```
Emits the event. To use this function one needs to define the `event` type as a `datatype` in the contract.
# Includable namespaces
## Includable namespaces
These need to be explicitly included (with `.aes` suffix)
## List
### List
This module contains common operations on lists like constructing, querying, traversing etc.
@ -1253,7 +1253,7 @@ List.enumerate(l : list('a)) : list(int * 'a)
Equivalent to [zip](#zip) with `[0..length(l)]`, but slightly faster.
## Option
### Option
Common operations on `option` types and lists of `option`s.
@ -1438,7 +1438,7 @@ Option.choose_first(l : list(option('a))) : option('a)
Same as [choose](#choose), but chooses from a list insted of two arguments.
## String
### String
Operations on the `string` type. A `string` is a UTF-8 encoded byte array.
@ -1554,7 +1554,7 @@ blake2b(s : string) : hash
Computes the Blake2B hash of the string.
## Func
### Func
Functional combinators.
@ -1684,7 +1684,7 @@ Func.untuplify3(f : 'a * 'b * 'c => 'd) : ('a, 'b, 'c) => 'd
Opposite to [tuplify](#tuplify).
## Pair
### Pair
Common operations on 2-tuples.
@ -1736,7 +1736,7 @@ Pair.swap(t : ('a * 'b)) : ('b * 'a)
Swaps elements.
## Triple
### Triple
#### fst
```
@ -1817,234 +1817,234 @@ Triple.rotl(t : ('a * 'b * 'c)) : ('b * 'c * 'a)
Cyclic rotation of the elements to the left.
## BLS12\_381
### BLS12\_381
### Types
#### Types
#### fp
##### fp
Built-in (Montgomery) integer representation 32 bytes
#### fr
##### fr
Built-in (Montgomery) integer representation 48 bytes
#### fp2
##### fp2
```
record fp2 = { x1 : fp, x2 : fp }`
```
#### g1
##### g1
```
record g1 = { x : fp, y : fp, z : fp }
```
#### g2
##### g2
```
record g2 = { x : fp2, y : fp2, z : fp2 }
```
#### gt
##### gt
```
record gt = { x1 : fp, x2 : fp, x3 : fp, x4 : fp, x5 : fp, x6 : fp, x7 : fp, x8 : fp, x9 : fp, x10 : fp, x11 : fp, x12 : fp }
```
### Functions
#### Functions
#### pairing\_check
##### pairing\_check
```
BLS12_381.pairing_check(xs : list(g1), ys : list(g2)) : bool
```
Pairing check of a list of points, `xs` and `ys` should be of equal length.
#### int_to_fr
##### int_to_fr
```
BLS12_381.int_to_fr(x : int) : fr
```
Convert an integer to an `fr` - a 32 bytes internal (Montgomery) integer representation.
#### int_to_fp
##### int_to_fp
```
BLS12_381.int_to_fp(x : int) : fp
```
Convert an integer to an `fp` - a 48 bytes internal (Montgomery) integer representation.
#### fr_to_int
##### fr_to_int
```
BLS12_381.fr_to_int(x : fr) : int
```
Convert a `fr` value into an integer.
#### fp_to_int
##### fp_to_int
```
BLS12_381.fp_to_int(x : fp) : int
```
Convert a `fp` value into an integer.
#### mk_g1
##### mk_g1
```
BLS12_381.mk_g1(x : int, y : int, z : int) : g1
```
Construct a `g1` point from three integers.
#### mk_g2
##### mk_g2
```
BLS12_381.mk_g2(x1 : int, x2 : int, y1 : int, y2 : int, z1 : int, z2 : int) : g2
```
Construct a `g2` point from six integers.
#### g1_neg
##### g1_neg
```
BLS12_381.g1_neg(p : g1) : g1
```
Negate a `g1` value.
#### g1_norm
##### g1_norm
```
BLS12_381.g1_norm(p : g1) : g1
```
Normalize a `g1` value.
#### g1_valid
##### g1_valid
```
BLS12_381.g1_valid(p : g1) : bool
```
Check that a `g1` value is a group member.
#### g1_is_zero
##### g1_is_zero
```
BLS12_381.g1_is_zero(p : g1) : bool
```
Check if a `g1` value corresponds to the zero value of the group.
#### g1_add
##### g1_add
```
BLS12_381.g1_add(p : g1, q : g1) : g1
```
Add two `g1` values.
#### g1_mul
##### g1_mul
```
BLS12_381.g1_mul(k : fr, p : g1) : g1
```
Scalar multiplication for `g1`.
#### g2_neg
##### g2_neg
```
BLS12_381.g2_neg(p : g2) : g2
```
Negate a `g2` value.
#### g2_norm
##### g2_norm
```
BLS12_381.g2_norm(p : g2) : g2
```
Normalize a `g2` value.
#### g2_valid
##### g2_valid
```
BLS12_381.g2_valid(p : g2) : bool
```
Check that a `g2` value is a group member.
#### g2_is_zero
##### g2_is_zero
```
BLS12_381.g2_is_zero(p : g2) : bool
```
Check if a `g2` value corresponds to the zero value of the group.
#### g2_add
##### g2_add
```
BLS12_381.g2_add(p : g2, q : g2) : g2
```
Add two `g2` values.
#### g2_mul
##### g2_mul
```
BLS12_381.g2_mul(k : fr, p : g2) : g2
```
Scalar multiplication for `g2`.
#### gt_inv
##### gt_inv
```
BLS12_381.gt_inv(p : gt) : gt
```
Invert a `gt` value.
#### gt_add
##### gt_add
```
BLS12_381.gt_add(p : gt, q : gt) : gt
```
Add two `gt` values.
#### gt_mul
##### gt_mul
```
BLS12_381.gt_mul(p : gt, q : gt) : gt
```
Multiply two `gt` values.
#### gt_pow
##### gt_pow
```
BLS12_381.gt_pow(p : gt, k : fr) : gt
```
Calculate exponentiation `p ^ k`.
#### gt_is_one
##### gt_is_one
```
BLS12_381.gt_is_one(p : gt) : bool
```
Compare a `gt` value to the unit value of the Gt group.
#### pairing
##### pairing
```
BLS12_381.pairing(p : g1, q : g2) : gt
```
Compute the pairing of a `g1` value and a `g2` value.
#### miller_loop
##### miller_loop
```
BLS12_381.miller_loop(p : g1, q : g2) : gt
```
Do the Miller loop stage of pairing for `g1` and `g2`.
#### final_exp
##### final_exp
```
BLS12_381.final_exp(p : gt) : gt
```
Perform the final exponentiation step of pairing for a `gt` value.
## Frac
### Frac
This namespace provides operations on rational numbers. A rational number is represented
as a fraction of two integers which are stored internally in the `frac` datatype.
@ -2068,9 +2068,9 @@ language provides checkers to prevent unintended usage of them. Therefore the ty
**will** allow that and the results of such comparison will be unspecified.
You should use [lt](#lt), [geq](#geq), [eq](#eq) etc instead.
### Types
#### Types
#### frac
##### frac
```
datatype frac = Pos(int, int) | Zero | Neg(int, int)
```
@ -2079,194 +2079,194 @@ Internal representation of fractional numbers. First integer encodes the numerat
both must be always positive, as the sign is being handled by the choice of the constructor.
### Functions
#### Functions
#### make_frac
##### make_frac
`Frac.make_frac(n : int, d : int) : frac`
Creates a fraction out of numerator and denominator. Automatically normalizes, so
`make_frac(2, 4)` and `make_frac(1, 2)` will yield same results.
#### num
##### num
`Frac.num(f : frac) : int`
Returns the numerator of a fraction.
#### den
##### den
`Frac.den(f : frac) : int`
Returns the denominator of a fraction.
#### to_pair
##### to_pair
`Frac.to_pair(f : frac) : int * int`
Turns a fraction into a pair of numerator and denominator.
#### sign
##### sign
`Frac.sign(f : frac) : int`
Returns the signum of a fraction, -1, 0, 1 if negative, zero, positive respectively.
#### to_str
##### to_str
`Frac.to_str(f : frac) : string`
Conversion to string. Does not display division by 1 or denominator if equals zero.
#### simplify
##### simplify
`Frac.simplify(f : frac) : frac`
Reduces fraction to normal form if for some reason it is not in it.
#### eq
##### eq
`Frac.eq(a : frac, b : frac) : bool`
Checks if `a` is equal to `b`.
#### neq
##### neq
`Frac.neq(a : frac, b : frac) : bool`
Checks if `a` is not equal to `b`.
#### geq
##### geq
`Frac.geq(a : frac, b : frac) : bool`
Checks if `a` is greater or equal to `b`.
#### leq
##### leq
`Frac.leq(a : frac, b : frac) : bool`
Checks if `a` is lesser or equal to `b`.
#### gt
##### gt
`Frac.gt(a : frac, b : frac) : bool`
Checks if `a` is greater than `b`.
#### lt
##### lt
`Frac.lt(a : frac, b : frac) : bool`
Checks if `a` is lesser than `b`.
#### min
##### min
`Frac.min(a : frac, b : frac) : frac`
Chooses lesser of the two fractions.
#### max
##### max
`Frac.max(a : frac, b : frac) : frac`
Chooses greater of the two fractions.
#### abs
##### abs
`Frac.abs(f : frac) : frac`
Absolute value.
#### from_int
##### from_int
`Frac.from_int(n : int) : frac`
From integer conversion. Effectively `make_frac(n, 1)`.
#### floor
##### floor
`Frac.floor(f : frac) : int`
Rounds a fraction to the nearest lesser or equal integer.
#### ceil
##### ceil
`Frac.ceil(f : frac) : int`
Rounds a fraction to the nearest greater or equal integer.
#### round_to_zero
##### round_to_zero
`Frac.round_to_zero(f : frac) : int`
Rounds a fraction towards zero.
Effectively `ceil` if lesser than zero and `floor` if greater.
#### round_from_zero
##### round_from_zero
`Frac.round_from_zero(f : frac) : int`
Rounds a fraction from zero.
Effectively `ceil` if greater than zero and `floor` if lesser.
#### round
##### round
`Frac.round(f : frac) : int`
Rounds a fraction to a nearest integer. If two integers are in the same distance it
will choose the even one.
#### add
##### add
`Frac.add(a : frac, b : frac) : frac`
Sum of the fractions.
#### neg
##### neg
`Frac.neg(a : frac) : frac`
Negation of the fraction.
#### sub
##### sub
`Frac.sub(a : frac, b : frac) : frac`
Subtraction of two fractions.
#### inv
##### inv
`Frac.inv(a : frac) : frac`
Inverts a fraction. Throws error if `a` is zero.
#### mul
##### mul
`Frac.mul(a : frac, b : frac) : frac`
Multiplication of two fractions.
#### div
##### div
`Frac.div(a : frac, b : frac) : frac`
Division of two fractions.
#### int_exp
##### int_exp
`Frac.int_exp(b : frac, e : int) : frac`
Takes `b` to the power of `e`. The exponent can be a negative value.
#### optimize
##### optimize
`Frac.optimize(f : frac, loss : frac) : frac`
Shrink the internal size of a fraction as much as possible by approximating it to the
point where the error would exceed the `loss` value.
#### is_sane
##### is_sane
`Frac.is_sane(f : frac) : bool`
For debugging. If it ever returns false in a code that doesn't call `frac` constructors or

263
docs/sophia_syntax.md Normal file
View File

@ -0,0 +1,263 @@
# Syntax
## Lexical syntax
### Comments
Single line comments start with `//` and block comments are enclosed in `/*`
and `*/` and can be nested.
### Keywords
```
contract elif else entrypoint false function if import include let mod namespace
private payable stateful switch true type record datatype main interface
```
### Tokens
- `Id = [a-z_][A-Za-z0-9_']*` identifiers start with a lower case letter.
- `Con = [A-Z][A-Za-z0-9_']*` constructors start with an upper case letter.
- `QId = (Con\.)+Id` qualified identifiers (e.g. `Map.member`)
- `QCon = (Con\.)+Con` qualified constructor
- `TVar = 'Id` type variable (e.g `'a`, `'b`)
- `Int = [0-9]+(_[0-9]+)*|0x[0-9A-Fa-f]+(_[0-9A-Fa-f]+)*` integer literal with optional `_` separators
- `Bytes = #[0-9A-Fa-f]+(_[0-9A-Fa-f]+)*` byte array literal with optional `_` separators
- `String` string literal enclosed in `"` with escape character `\`
- `Char` character literal enclosed in `'` with escape character `\`
- `AccountAddress` base58-encoded 32 byte account pubkey with `ak_` prefix
- `ContractAddress` base58-encoded 32 byte contract address with `ct_` prefix
- `OracleAddress` base58-encoded 32 byte oracle address with `ok_` prefix
- `OracleQueryId` base58-encoded 32 byte oracle query id with `oq_` prefix
Valid string escape codes are
| Escape | ASCII | |
|---------------|-------------|---|
| `\b` | 8 | |
| `\t` | 9 | |
| `\n` | 10 | |
| `\v` | 11 | |
| `\f` | 12 | |
| `\r` | 13 | |
| `\e` | 27 | |
| `\xHexDigits` | *HexDigits* | |
See the [identifier encoding scheme](https://github.com/aeternity/protocol/blob/master/node/api/api_encoding.md) for the
details on the base58 literals.
## Layout blocks
Sophia uses Python-style layout rules to group declarations and statements. A
layout block with more than one element must start on a separate line and be
indented more than the currently enclosing layout block. Blocks with a single
element can be written on the same line as the previous token.
Each element of the block must share the same indentation and no part of an
element may be indented less than the indentation of the block. For instance
```sophia
contract Layout =
function foo() = 0 // no layout
function bar() = // layout block starts on next line
let x = foo() // indented more than 2 spaces
x
+ 1 // the '+' is indented more than the 'x'
```
## Notation
In describing the syntax below, we use the following conventions:
- Upper-case identifiers denote non-terminals (like `Expr`) or terminals with
some associated value (like `Id`).
- Keywords and symbols are enclosed in single quotes: `'let'` or `'='`.
- Choices are separated by vertical bars: `|`.
- Optional elements are enclosed in `[` square brackets `]`.
- `(` Parentheses `)` are used for grouping.
- Zero or more repetitions are denoted by a postfix `*`, and one or more
repetitions by a `+`.
- `Block(X)` denotes a layout block of `X`s.
- `Sep(X, S)` is short for `[X (S X)*]`, i.e. a possibly empty sequence of `X`s
separated by `S`s.
- `Sep1(X, S)` is short for `X (S X)*`, i.e. same as `Sep`, but must not be empty.
## Declarations
A Sophia file consists of a sequence of *declarations* in a layout block.
```c
File ::= Block(TopDecl)
TopDecl ::= ['payable'] 'contract' Con '=' Block(Decl)
| 'namespace' Con '=' Block(Decl)
| '@compiler' PragmaOp Version
| 'include' String
Decl ::= 'type' Id ['(' TVar* ')'] '=' TypeAlias
| 'record' Id ['(' TVar* ')'] '=' RecordType
| 'datatype' Id ['(' TVar* ')'] '=' DataType
| (EModifier* 'entrypoint' | FModifier* 'function') Block(FunDecl)
FunDecl ::= Id ':' Type // Type signature
| Id Args [':' Type] '=' Block(Stmt) // Definition
PragmaOp ::= '<' | '=<' | '==' | '>=' | '>'
Version ::= Sep1(Int, '.')
EModifier ::= 'payable' | 'stateful'
FModifier ::= 'stateful' | 'private'
Args ::= '(' Sep(Pattern, ',') ')'
```
Contract declarations must appear at the top-level.
For example,
```sophia
contract Test =
type t = int
entrypoint add (x : t, y : t) = x + y
```
There are three forms of type declarations: type aliases (declared with the
`type` keyword), record type definitions (`record`) and data type definitions
(`datatype`):
```c
TypeAlias ::= Type
RecordType ::= '{' Sep(FieldType, ',') '}'
DataType ::= Sep1(ConDecl, '|')
FieldType ::= Id ':' Type
ConDecl ::= Con ['(' Sep1(Type, ',') ')']
```
For example,
```sophia
record point('a) = {x : 'a, y : 'a}
datatype shape('a) = Circle(point('a), 'a) | Rect(point('a), point('a))
type int_shape = shape(int)
```
## Types
```c
Type ::= Domain '=>' Type // Function type
| Type '(' Sep(Type, ',') ')' // Type application
| '(' Type ')' // Parens
| 'unit' | Sep(Type, '*') // Tuples
| Id | QId | TVar
Domain ::= Type // Single argument
| '(' Sep(Type, ',') ')' // Multiple arguments
```
The function type arrow associates to the right.
Example,
```sophia
'a => list('a) => (int * list('a))
```
## Statements
Function bodies are blocks of *statements*, where a statement is one of the following
```c
Stmt ::= 'switch' '(' Expr ')' Block(Case)
| 'if' '(' Expr ')' Block(Stmt)
| 'elif' '(' Expr ')' Block(Stmt)
| 'else' Block(Stmt)
| 'let' LetDef
| Expr
LetDef ::= Id Args [':' Type] '=' Block(Stmt) // Function definition
| Pattern '=' Block(Stmt) // Value definition
Case ::= Pattern '=>' Block(Stmt)
Pattern ::= Expr
```
`if` statements can be followed by zero or more `elif` statements and an optional final `else` statement. For example,
```sophia
let x : int = 4
switch(f(x))
None => 0
Some(y) =>
if(y > 10)
"too big"
elif(y < 3)
"too small"
else
"just right"
```
## Expressions
```c
Expr ::= '(' LamArgs ')' '=>' Block(Stmt) // Anonymous function (x) => x + 1
| 'if' '(' Expr ')' Expr 'else' Expr // If expression if(x < y) y else x
| Expr ':' Type // Type annotation 5 : int
| Expr BinOp Expr // Binary operator x + y
| UnOp Expr // Unary operator ! b
| Expr '(' Sep(Expr, ',') ')' // Application f(x, y)
| Expr '.' Id // Projection state.x
| Expr '[' Expr ']' // Map lookup map[key]
| Expr '{' Sep(FieldUpdate, ',') '}' // Record or map update r{ fld[key].x = y }
| '[' Sep(Expr, ',') ']' // List [1, 2, 3]
| '[' Expr '|' Sep(Generator, ',') ']'
// List comprehension [k | x <- [1], if (f(x)), let k = x+1]
| '[' Expr '..' Expr ']' // List range [1..n]
| '{' Sep(FieldUpdate, ',') '}' // Record or map value {x = 0, y = 1}, {[key] = val}
| '(' Expr ')' // Parens (1 + 2) * 3
| Id | Con | QId | QCon // Identifiers x, None, Map.member, AELib.Token
| Int | Bytes | String | Char // Literals 123, 0xff, #00abc123, "foo", '%'
| AccountAddress | ContractAddress // Chain identifiers
| OracleAddress | OracleQueryId // Chain identifiers
Generator ::= Pattern '<-' Expr // Generator
| 'if' '(' Expr ')' // Guard
| LetDef // Definition
LamArgs ::= '(' Sep(LamArg, ',') ')'
LamArg ::= Id [':' Type]
FieldUpdate ::= Path '=' Expr
Path ::= Id // Record field
| '[' Expr ']' // Map key
| Path '.' Id // Nested record field
| Path '[' Expr ']' // Nested map key
BinOp ::= '||' | '&&' | '<' | '>' | '=<' | '>=' | '==' | '!='
| '::' | '++' | '+' | '-' | '*' | '/' | 'mod' | '^'
UnOp ::= '-' | '!'
```
## Operators types
| Operators | Type
| --- | ---
| `-` `+` `*` `/` `mod` `^` | arithmetic operators
| `!` `&&` `\|\|` | logical operators
| `==` `!=` `<` `>` `=<` `>=` | comparison operators
| `::` `++` | list operators
## Operator precendences
In order of highest to lowest precedence.
| Operators | Associativity
| --- | ---
| `!` | right
| `^` | left
| `*` `/` `mod` | left
| `-` (unary) | right
| `+` `-` | left
| `::` `++` | right
| `<` `>` `=<` `>=` `==` `!=` | none
| `&&` | right
| `\|\|` | right