diff --git a/src/hz.erl b/src/hz.erl index 2f825f5..1603269 100644 --- a/src/hz.erl +++ b/src/hz.erl @@ -1392,99 +1392,108 @@ prepare_contract(File) -> end. prepare_aaci(ACI) -> - Types = lists:foldl(fun prepare_namespace_types/2, #{}, ACI), + % We want to take the types represented by the ACI, things like N1.T(N2.T), + % and dereference them down to concrete types like + % {tuple, [integer, string]}. Our type dereferencing algorithms + % shouldn't act directly on the JSON-based structures that the compiler + % gives us, though, though, so before we do the analysis, we should strip + % the ACI down to a list of 'opaque' type defintions and function specs. + {Name, OpaqueSpecs, TypeDefs} = convert_aci_types(ACI), + % Now that we have the opaque types, we can dereference the function specs + % down to the concrete types they actually represent. + Specs = expand_contract_specs(OpaqueSpecs, TypeDefs, #{}), + + {aaci, Name, Specs, TypeDefs}. + +expand_contract_specs([], _Types, Specs) -> + Specs; +expand_contract_specs([{Name, ArgsOpaque, ResultOpaque} | Rest], Types, Specs) -> + {ok, Args} = flatten_opaque_types(ArgsOpaque, Types, []), + {ok, Result} = flatten_opaque_type(ResultOpaque, Types), + NewSpecs = maps:put(Name, {Args, Result}, Specs), + expand_contract_specs(Rest, Types, NewSpecs). + +convert_aci_types(ACI) -> + % Find the main contract, so we can get the specifications of its + % entrypoints. [{NameBin, SpecDefs}] = [{N, F} || #{contract := #{kind := contract_main, functions := F, name := N}} <- ACI], Name = binary_to_list(NameBin), - Specs = simplify_specs(SpecDefs, #{}, Types), - {aaci, Name, Specs, Types}. + % Turn these specifications into opaque types that we can reason about. + Specs = lists:map(fun convert_function_spec/1, SpecDefs), -prepare_namespace_types(#{namespace := NS}, Types) -> - prepare_namespace_types2(NS, false, Types); -prepare_namespace_types(#{contract := NS}, Types) -> - prepare_namespace_types2(NS, true, Types). + % These specifications can reference other type definitions from the main + % contract and any other namespaces, so extract these types and convert + % them too. + TypeDefTree = lists:map(fun convert_namespace_typedefs/1, ACI), + % The tree structure of the ACI naturally leads to a tree of opaque types, + % but we want a map, so flatten it out before we continue. + TypeDefMap = collect_opaque_types(TypeDefTree, #{}), -prepare_namespace_types2(NS, IsContract, Types) -> + % This is all the information we actually need from the ACI, the rest is + % just pre-compute and acceleration. + {Name, Specs, TypeDefMap}. + +convert_function_spec(#{name := NameBin, arguments := Args, returns := Result}) -> + Name = binary_to_list(NameBin), + ArgTypes = lists:map(fun convert_arg/1, Args), + ResultType = opaque_type([], Result), + {Name, ArgTypes, ResultType}. + +convert_arg(#{name := NameBin, type := TypeDef}) -> + Name = binary_to_list(NameBin), + {ok, Type} = opaque_type([], TypeDef), + {Name, Type}. + +convert_namespace_typedefs(#{namespace := NS}) -> + convert_namespace_typedefs2(NS, false); +convert_namespace_typedefs(#{contract := NS}) -> + convert_namespace_typedefs2(NS, true). + +convert_namespace_typedefs2(NS, IsContract) -> TypeDefs = maps:get(typedefs, NS), NameBin = maps:get(name, NS), Name = binary_to_list(NameBin), - Types2 = case IsContract of - true -> - maps:put(Name, {[], contract}, Types); - false -> - Types - end, - Types3 = case maps:find(state, NS) of - {ok, StateDefACI} -> - StateDefOpaque = opaque_type([], StateDefACI), - maps:put(Name ++ ".state", {[], StateDefOpaque}, Types2); - error -> - Types2 - end, - simplify_typedefs(TypeDefs, Types3, Name ++ "."). + ContractAsType = case IsContract of + true -> {Name, [], contract}; + false -> [] + end, + State = case maps:find(state, NS) of + {ok, StateDefACI} -> + StateDefOpaque = opaque_type([], StateDefACI), + {Name ++ ".state", [], StateDefOpaque}; + error -> + [] + end, + ExplicitTypeDefs = convert_explicit_typedefs(TypeDefs, Name ++ ".", []), + % Throw all the weird sources of types into one messy deeplist. + [ContractAsType, State, ExplicitTypeDefs]. -simplify_typedefs([], Types, _NamePrefix) -> +% The easiest step, turn a deep list of opaque types into a map. +collect_opaque_types([], Types) -> Types; -simplify_typedefs([Next | Rest], Types, NamePrefix) -> - #{name := NameBin, vars := ParamDefs, typedef := T} = Next, +collect_opaque_types([L | R], Types) -> + NewTypes = collect_opaque_types(L, Types), + collect_opaque_types(R, NewTypes); +collect_opaque_types({Name, Params, Def}, Types) -> + maps:put(Name, {Params, Def}, Types). + + +convert_explicit_typedefs([], _NamePrefix, Converted) -> + Converted; +convert_explicit_typedefs([Next | Rest], NamePrefix, Converted) -> + #{name := NameBin, vars := ParamDefs, typedef := DefACI} = Next, Name = NamePrefix ++ binary_to_list(NameBin), Params = [binary_to_list(Param) || #{name := Param} <- ParamDefs], - Type = opaque_type(Params, T), - NewTypes = maps:put(Name, {Params, Type}, Types), - simplify_typedefs(Rest, NewTypes, NamePrefix). - -simplify_specs([], Specs, _Types) -> - Specs; -simplify_specs([Next | Rest], Specs, Types) -> - #{name := NameBin, arguments := ArgDefs, returns := ResultDef} = Next, - Name = binary_to_list(NameBin), - ArgTypes = [simplify_args(Arg, Types) || Arg <- ArgDefs], - {ok, ResultType} = type(ResultDef, Types), - NewSpecs = maps:put(Name, {ArgTypes, ResultType}, Specs), - simplify_specs(Rest, NewSpecs, Types). - -simplify_args(#{name := NameBin, type := TypeDef}, Types) -> - Name = binary_to_list(NameBin), - % FIXME We should make this error more informative, and continue - % propogating it up, so that the user can provide their own ACI and find - % out whether it worked or not. At that point ACI -> AACI could almost be a - % module or package of its own. - {ok, Type} = type(TypeDef, Types), - {Name, Type}. - -% Type preparation has two goals. First, we need a data structure that can be -% traversed quickly, to take sophia-esque erlang expressions and turn them into -% fate-esque erlang expressions that aebytecode can serialize. Second, we need -% partially substituted names, so that error messages can be generated for why -% "foobar" is not valid as the third field of a `bazquux`, because the third -% field is supposed to be `option(integer)`, not `string`. -% -% To achieve this we need three representations of each type expression, which -% together form an 'annotated type'. First, we need the fully opaque name, -% "bazquux", then we need the normalized name, which is an opaque name with the -% bare-minimum substitution needed to make the outer-most type-constructor an -% identifiable built-in, ADT, or record type, and then we need the flattened -% type, which is the raw {variant, [{Name, Fields}, ...]} or -% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE -% coercion. The type sub-expressions in these flattened types will each be -% fully annotated as well, i.e. they will each contain *all three* of the above -% representations, so that coercion of subexpressions remains fast AND -% informative. -% -% In a lot of cases the opaque type given will already be normalized, in which -% case either the normalized field or the non-normalized field of an annotated -% type can simple be the atom `already_normalized`, which means error messages -% can simply render the normalized type expression and know that the error will -% make sense. - -type(T, Types) -> - O = opaque_type([], T), - flatten_opaque_type(O, Types). + Def = opaque_type(Params, DefACI), + convert_explicit_typedefs(Rest, NamePrefix, [Converted, {Name, Params, Def}]). +% Convert an ACI type defintion/spec into the 'opaque type' representation that +% our dereferencing algorithms can reason about. opaque_type(Params, NameBin) when is_binary(NameBin) -> Name = opaque_type_name(NameBin), case not is_atom(Name) and lists:member(Name, Params) of @@ -1508,7 +1517,7 @@ opaque_type(Params, Pair) when is_map(Pair) -> [{Name, TypeArgs}] = maps:to_list(Pair), {opaque_type_name(Name), [opaque_type(Params, Arg) || Arg <- TypeArgs]}. -% atoms for builtins, lists for user defined types +% atoms for builtins, strings (lists) for user-defined types opaque_type_name(<<"int">>) -> integer; opaque_type_name(<<"address">>) -> address; opaque_type_name(<<"contract">>) -> contract; @@ -1519,6 +1528,31 @@ opaque_type_name(<<"map">>) -> map; opaque_type_name(<<"string">>) -> string; opaque_type_name(Name) -> binary_to_list(Name). +% Type preparation has two goals. First, we need a data structure that can be +% traversed quickly, to take sophia-esque erlang expressions and turn them into +% fate-esque erlang expressions that aebytecode can serialize. Second, we need +% partially substituted names, so that error messages can be generated for why +% "foobar" is not valid as the third field of a `bazquux`, because the third +% field is supposed to be `option(integer)`, not `string`. +% +% To achieve this we need three representations of each type expression, which +% together form an 'annotated type'. First, we need the fully opaque name, +% "bazquux", then we need the normalized name, which is an opaque name with the +% bare-minimum substitution needed to make the outer-most type-constructor an +% identifiable built-in, ADT, or record type, and then we need the flattened +% type, which is the raw {variant, [{Name, Fields}, ...]} or +% {record, [{Name, Type}]} expression that can be used in actual Sophia->FATE +% coercion. The type sub-expressions in these flattened types will each be +% fully annotated as well, i.e. they will each contain *all three* of the above +% representations, so that coercion of subexpressions remains fast and +% informative. +% +% In a lot of cases the opaque type given will already be normalized, in which +% case either the normalized field or the non-normalized field of an annotated +% type can simple be the atom `already_normalized`, which means error messages +% can simply render the normalized type expression and know that the error will +% make sense. + flatten_opaque_type(T, Types) -> case normalize_opaque_type(T, Types) of {ok, AlreadyNormalized, NOpaque, NExpanded} ->