GM Serialization ===== Serialization helpers for the Gajumaru. Build ----- $ rebar3 compile Test ---- $ rebar3 eunit Dynamic encoding ---- The module `gmser_dyn` offers dynamic encoding support, encoding most 'regular' Erlang data types into an internal RLP representation. Main API: * `encode(term()) -> iolist()` * `encode_typed(template(), term()) -> iolist()` * `decode(iolist()) -> term()` * `serialize(term()) -> binary()` * `serialize_typed(template(), term()) -> binary()` * `deserialize(binary()) -> term()` The basic types supported by the encoder are: * `non_neg_integer()` (`int` , code: 248) * `binary()` (`binary`, code: 249) * `boolean()` (`bool` , code: 250) * `list()` (`list` , code: 251) * `map()` (`map` , code: 252) * `tuple()` (`tuple` , code: 253) * `gmser_id:id()` (`id` , code: 254) * `atom()` (`label` , code: 255) When encoding `map` types, the map elements are first sorted. When specifying a map type for template-driven encoding, use the `#{items => [{Key, Value}]}` construct. Labels ---- Labels correspond to (existing) atoms in Erlang. Decoding of a label results in a call to `binary_to_existing_atom/2`, so will fail if the corresponding atom does not already exist. It's possible to cache labels for more compact encoding. Note that when caching labels, the same cache mapping needs to be used on the decoder side. Labels are encoded as `[<<255>>, << AtomToBinary/binary >>]`. If a cached label is used, the encoding becomes `[<<255>, [Ix]]`, where `Ix` is the integer-encoded index value of the cached label. Examples ---- Dynamically encoded objects have the basic structure `[<<0>>,V,Obj]`, where `V` is the integer-coded version, and `Obj` is the top-level encoding on the form `[Tag,Data]`. ```erlang E = fun(T) -> io:fwrite("~w~n", [gmser_dyn:encode(T)]) end. E(17) -> [<<0>>,<<1>>,[<<248>>,<<17>>]] E(<<"abc">>) -> [<<0>>,<<1>>,[<<249>>,<<97,98,99>>]] E(true) -> [<<0>>,<<1>>,[<<250>>,<<1>>]] E(false) -> [<<0>>,<<1>>,[<<250>>,<<0>>]] E([1,2]) -> [<<0>>,<<1>>,[<<251>>,[[<<248>>,<<1>>],[<<248>>,<<2>>]]]] E({1,2}) -> [<<0>>,<<1>>,[<<253>>,[[<<248>>,<<1>>],[<<248>>,<<2>>]]]] E(#{a=>1, b=>2}) -> [<<0>>,<<1>>,[<<252>>,[[[<<255>>,<<97>>],[<<248>>,<<1>>]],[[<<255>>,<<98>>],[<<248>>,<<2>>]]]]] E(gmser_id:create(account,<<1:256>>)) -> [<<0>>,<<1>>,[<<254>>,<<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>]] ``` Note that tuples and list are encoded the same way, except for the initial type tag. Maps are encoded as `[, [KV1, KV2, ...]]`, where `[KV1, KV2, ...]` is the sorted list of key-value tuples from `map:to_list(Map)`, but with the `tuple` type tag omitted. Template-driven encoding ---- Templates can be provided to the encoder by either naming an already registered type, or by passing a template directly. The template will then be enforced, and used to slightly compress the encoding. In the following example, as the encoder knows that `{11,12}` is encoded as a tuple of two integers, it can omit the inner type tags. ```erlang ET = fun(Type,Term) -> io:fwrite("~w~n", [gmser_dyn:encode_typed(Type,Term)]) end. ET({int,int}, {11,12}) ->[<<0>>,<<1>>,[<<253>>,[<<11>>,<<12>>]]] ET({int,int}, {11,a}) -> ** exception error: {illegal,int,a} ... ```