gmbytecode/src/aeb_heap.erl
radrow 83616392e1 Add CREATE, CLONE and BYTECODE_HASH opcodes. Add bytecode typerep and datatype.
Format fixes. Changed type of BLOCKHASH to variant.

Fixed number of parameters to include target

Changed op args

Protected create

Make new type store a SERIALIZED CODE (instead of RAW BYTECODE)

Fix test

Format

Make create not protected

format

Fix serialization of fate_code type

Align

Add rebar3

Use shipped rebar3

Fix serialization, test

Fix tests

Rename fate_code to contract_bytearray

Update README
2021-03-23 12:27:35 +01:00

332 lines
12 KiB
Erlang

-module(aeb_heap).
-export([ to_binary/1
, to_binary/2
, from_heap/3
, from_binary/2
, from_binary/3
, maps_with_next_id/1
, set_next_id/2
, heap_fragment/3
, heap_value/3
, heap_value/4
, heap_value_pointer/1
, heap_value_maps/1
, heap_value_offset/1
, heap_value_heap/1
, heap_value_byte_size/1
, heap_fragment_maps/1
, heap_fragment_offset/1
, heap_fragment_heap/1
]).
-export_type([binary_value/0, heap_value/0, offset/0, heap_fragment/0]).
-include_lib("aebytecode/include/aeb_typerep_def.hrl").
-include_lib("aebytecode/include/aeb_heap.hrl").
-type word() :: non_neg_integer().
-type pointer() :: word().
-opaque heap_fragment() :: #heap{}.
-type offset() :: non_neg_integer().
-type binary_value() :: binary().
-type heap_value() :: {pointer(), heap_fragment()}.
-spec maps_with_next_id(heap_fragment()) -> #maps{}.
%% Create just a maps value, don't keep rest of Heap
maps_with_next_id(#heap{maps = #maps{next_id = N}}) ->
#maps{ next_id = N }.
-spec set_next_id(heap_fragment(), non_neg_integer()) -> heap_fragment().
set_next_id(Heap, N) ->
Heap#heap{ maps = Heap#heap.maps#maps{ next_id = N } }.
%% -- data type heap_fragment
-spec heap_fragment(binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment().
heap_fragment(Heap) ->
heap_fragment(#maps{ next_id = 0 }, 0, Heap).
-spec heap_fragment(#maps{}, offset(),
binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment().
heap_fragment(Maps, Offset, Heap) ->
#heap{maps = Maps, offset = Offset, heap = Heap}.
-spec heap_fragment_maps(heap_fragment()) -> #maps{}.
heap_fragment_maps(#heap{maps = Maps}) ->
Maps.
-spec heap_fragment_offset(heap_fragment()) -> offset().
heap_fragment_offset(#heap{offset = Offs}) ->
Offs.
-spec heap_fragment_heap(heap_fragment()) -> binary() | #{non_neg_integer() => non_neg_integer()}.
heap_fragment_heap(#heap{heap = Heap}) ->
Heap.
%% -- data type heap_value
-spec heap_value(#maps{}, pointer(),
binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_value().
heap_value(Maps, Ptr, Heap) ->
heap_value(Maps, Ptr, Heap, 0).
-spec heap_value(#maps{}, pointer(),
binary() | #{non_neg_integer() => non_neg_integer()}, offset()) -> heap_value().
heap_value(Maps, Ptr, Heap, Offs) ->
{Ptr, heap_fragment(Maps, Offs, Heap)}.
-spec heap_value_pointer(heap_value()) -> pointer().
heap_value_pointer({Ptr, _}) -> Ptr.
-spec heap_value_maps(heap_value()) -> #maps{}.
heap_value_maps({_, Heap}) -> Heap#heap.maps.
-spec heap_value_offset(heap_value()) -> offset().
heap_value_offset({_, Heap}) -> Heap#heap.offset.
-spec heap_value_heap(heap_value()) ->
binary() | #{non_neg_integer() => non_neg_integer()}.
heap_value_heap({_, Heap}) -> Heap#heap.heap.
%% -- Byte size of a heap value ----------------------------------------------
-spec heap_value_byte_size(heap_value()) -> non_neg_integer().
heap_value_byte_size({_, Heap}) ->
Value = Heap#heap.heap,
Maps = Heap#heap.maps,
ValueSize =
if is_binary(Value) -> byte_size(Value);
true -> 0 end,
MapsSize =
lists:sum([ pmap_size(Map) || Map <- maps:values(Maps#maps.maps) ]),
ValueSize + MapsSize.
pmap_size(#pmap{data = stored}) -> 0;
pmap_size(#pmap{data = Data}) when is_map(Data) ->
lists:sum([ byte_size(Key) + byte_size(Val)
|| {Key, Val} <- maps:to_list(Data),
Val /= tombstone ]).
%% -- Value to binary --------------------------------------------------------
-spec to_binary(aeb_aevm_data:data()) -> aeb_aevm_data:heap().
%% Encode the data as a heap where the first word is the value (for unboxed
%% types) or a pointer to the value (for boxed types).
to_binary(Data) ->
to_binary(Data, 0).
to_binary(Data, BaseAddress) ->
{Address, Memory} = to_binary1(Data, BaseAddress + 32),
R = <<Address:256, Memory/binary>>,
R.
%% Allocate the data in memory, from the given address. Return a pair
%% of memory contents from that address and the value representing the
%% data.
to_binary1(Data,_Address) when is_integer(Data) ->
{Data,<<>>};
to_binary1(Data, Address) when is_binary(Data) ->
%% a string
Words = aeb_memory:binary_to_words(Data),
{Address,<<(size(Data)):256, << <<W:256>> || W <- Words>>/binary>>};
to_binary1({contract_bytearray, FateCode}, Address) when is_binary(FateCode) ->
Words = aeb_memory:binary_to_words(FateCode),
{Address,<<(size(FateCode)):256, << <<W:256>> || W <- Words>>/binary>>};
to_binary1(none, Address) -> to_binary1({variant, 0, []}, Address);
to_binary1({some, Value}, Address) -> to_binary1({variant, 1, [Value]}, Address);
to_binary1(word, Address) -> to_binary1({?TYPEREP_WORD_TAG}, Address);
to_binary1(string, Address) -> to_binary1({?TYPEREP_STRING_TAG}, Address);
to_binary1(typerep, Address) -> to_binary1({?TYPEREP_TYPEREP_TAG}, Address);
to_binary1(contract_bytearray, Address) -> to_binary1({?TYPEREP_CONTRACT_BYTEARRAY_TAG}, Address);
to_binary1(function, Address) -> to_binary1({?TYPEREP_FUN_TAG}, Address);
to_binary1({list, T}, Address) -> to_binary1({?TYPEREP_LIST_TAG, T}, Address);
to_binary1({option, T}, Address) -> to_binary1({variant, [[], [T]]}, Address);
to_binary1({tuple, Ts}, Address) -> to_binary1({?TYPEREP_TUPLE_TAG, Ts}, Address);
to_binary1({variant, Cons}, Address) -> to_binary1({?TYPEREP_VARIANT_TAG, Cons}, Address);
to_binary1({map, K, V}, Address) -> to_binary1({?TYPEREP_MAP_TAG, K, V}, Address);
to_binary1({variant, Tag, Args}, Address) ->
to_binary1(list_to_tuple([Tag | Args]), Address);
to_binary1(Map, Address) when is_map(Map) ->
Size = maps:size(Map),
%% Sort according to binary ordering
KVs = lists:sort([ {to_binary(K), to_binary(V)} || {K, V} <- maps:to_list(Map) ]),
{Address, <<Size:256, << <<(byte_size(K)):256, K/binary,
(byte_size(V)):256, V/binary>> || {K, V} <- KVs >>/binary >>};
to_binary1({}, _Address) ->
{0, <<>>};
to_binary1(Data, Address) when is_tuple(Data) ->
{Elems,Memory} = to_binaries(tuple_to_list(Data),Address+32*size(Data)),
ElemsBin = << <<W:256>> || W <- Elems>>,
{Address,<< ElemsBin/binary, Memory/binary >>};
to_binary1([],_Address) ->
<<Nil:256>> = <<(-1):256>>,
{Nil,<<>>};
to_binary1([H|T],Address) ->
to_binary1({H,T},Address).
to_binaries([],_Address) ->
{[],<<>>};
to_binaries([H|T],Address) ->
{HRep,HMem} = to_binary1(H,Address),
{TRep,TMem} = to_binaries(T,Address+size(HMem)),
{[HRep|TRep],<<HMem/binary, TMem/binary>>}.
%% Interpret a return value (a binary) using a type rep.
-spec from_heap(Type :: ?Type(), Heap :: binary(), Ptr :: integer()) ->
{ok, term()} | {error, term()}.
from_heap(Type, Heap, Ptr) ->
try {ok, from_binary(#{}, Type, Heap, Ptr)}
catch _:Err ->
%% io:format("** Error: from_heap failed with ~p\n ~p\n", [Err, erlang:get_stacktrace()]),
{error, Err}
end.
%% Base address is the address of the first word of the given heap.
-spec from_binary(T :: ?Type(),
Heap :: binary(),
BaseAddr :: non_neg_integer()) ->
{ok, term()} | {error, term()}.
from_binary(T, Heap = <<V:256, _/binary>>, BaseAddr) ->
from_heap(T, <<0:BaseAddr/unit:8, Heap/binary>>, V);
from_binary(_, Bin, _BaseAddr) ->
{error, {binary_too_short, Bin}}.
-spec from_binary(?Type(), binary()) -> {ok, term()} | {error, term()}.
from_binary(T, Heap) ->
from_binary(T, Heap, 0).
from_binary(_, word, _, V) ->
V;
from_binary(_, signed_word, _, V) ->
<<N:256/signed>> = <<V:256>>,
N;
from_binary(_, bool, _, V) ->
case V of
0 -> false;
1 -> true
end;
from_binary(_, string, Heap, V) ->
StringSize = heap_word(Heap,V),
BitAddr = 8*(V+32),
<<_:BitAddr,Bytes:StringSize/binary,_/binary>> = Heap,
Bytes;
from_binary(_, {tuple, []}, _, _) ->
{};
from_binary(Visited, {tuple,Cpts}, Heap, V) ->
check_circular_refs(Visited, V),
NewVisited = Visited#{V => true},
ElementNums = lists:seq(0, length(Cpts)-1),
TypesAndPointers = lists:zip(Cpts, ElementNums),
ElementAddress = fun(Index) -> V + 32 * Index end,
Element = fun(Index) ->
heap_word(Heap, ElementAddress(Index))
end,
Convert = fun(Type, Index) ->
from_binary(NewVisited, Type, Heap, Element(Index))
end,
Elements = [Convert(T, I) || {T,I} <- TypesAndPointers],
list_to_tuple(Elements);
from_binary(Visited, {list, Elem}, Heap, V) ->
<<Nil:256>> = <<(-1):256>>,
if V==Nil ->
[];
true ->
{H,T} = from_binary(Visited, {tuple,[Elem,{list,Elem}]},Heap,V),
[H|T]
end;
from_binary(Visited, {option, A}, Heap, V) ->
from_binary(Visited, {variant_t, [{none, []}, {some, [A]}]}, Heap, V);
from_binary(Visited, {variant, Cons}, Heap, V) ->
Tag = heap_word(Heap, V),
Args = lists:nth(Tag + 1, Cons),
Visited1 = Visited#{V => true},
{variant, Tag, tuple_to_list(from_binary(Visited1, {tuple, Args}, Heap, V + 32))};
from_binary(Visited, {variant_t, TCons}, Heap, V) -> %% Tagged variants
{Tags, Cons} = lists:unzip(TCons),
{variant, I, Args} = from_binary(Visited, {variant, Cons}, Heap, V),
Tag = lists:nth(I + 1, Tags),
case Args of
[] -> Tag;
_ -> list_to_tuple([Tag | Args])
end;
from_binary(_Visited, {map, A, B}, Heap, Ptr) ->
%% FORMAT: [Size] [KeySize] Key [ValSize] Val .. [KeySize] Key [ValSize] Val
Size = heap_word(Heap, Ptr),
map_binary_to_value(A, B, Size, Heap, Ptr + 32);
from_binary(Visited, typerep, Heap, V) ->
check_circular_refs(Visited, V),
Tag = heap_word(Heap, V),
Arg1 = fun(T, I) -> from_binary(Visited#{V => true}, T, Heap, heap_word(Heap, V + 32 * I)) end,
Arg = fun(T) -> Arg1(T, 1) end,
case Tag of
?TYPEREP_WORD_TAG -> word;
?TYPEREP_STRING_TAG -> string;
?TYPEREP_TYPEREP_TAG -> typerep;
?TYPEREP_LIST_TAG -> {list, Arg(typerep)};
?TYPEREP_TUPLE_TAG -> {tuple, Arg({list, typerep})};
?TYPEREP_VARIANT_TAG -> {variant, Arg({list, {list, typerep}})};
?TYPEREP_MAP_TAG -> {map, Arg(typerep), Arg1(typerep, 2)};
?TYPEREP_FUN_TAG -> function;
?TYPEREP_CONTRACT_BYTEARRAY_TAG -> contract_bytearray
end;
from_binary(_, contract_bytearray, Heap, V) ->
FateCodeSize = heap_word(Heap, V),
BitAddr = 8*(V+32),
<<_:BitAddr,Bytes:FateCodeSize/binary,_/binary>> = Heap,
{contract_bytearray, Bytes}.
map_binary_to_value(KeyType, ValType, N, Bin, Ptr) ->
%% Avoid looping on bogus sizes
MaxN = byte_size(Bin) div 64,
Heap = heap_fragment(Bin),
map_from_binary({value, KeyType, ValType}, min(N, MaxN), Heap, Ptr, #{}).
map_from_binary(_, 0, _, _, Map) -> Map;
map_from_binary({value, KeyType, ValType} = Output, I, Heap, Ptr, Map) ->
KeySize = get_word(Heap, Ptr),
KeyPtr = Ptr + 32,
KeyBin = get_chunk(Heap, KeyPtr, KeySize),
ValSize = get_word(Heap, KeyPtr + KeySize),
ValPtr = KeyPtr + KeySize + 32,
ValBin = get_chunk(Heap, ValPtr, ValSize),
%% Keys and values are self contained binaries
{ok, Key} = from_binary(KeyType, KeyBin),
{ok, Val} = from_binary(ValType, ValBin),
map_from_binary(Output, I - 1, Heap, ValPtr + ValSize, Map#{Key => Val}).
check_circular_refs(Visited, V) ->
case maps:is_key(V, Visited) of
true -> exit(circular_references);
false -> ok
end.
heap_word(Heap, Addr) when is_binary(Heap) ->
BitSize = 8*Addr,
<<_:BitSize,W:256,_/binary>> = Heap,
W;
heap_word(Heap, Addr) when is_map(Heap) ->
0 = Addr rem 32, %% Check that it's word aligned.
maps:get(Addr, Heap, 0).
get_word(#heap{offset = Offs, heap = Mem}, Addr) when Addr >= Offs ->
get_word(Mem, Addr - Offs);
get_word(Mem, Addr) when is_binary(Mem) ->
<<_:Addr/unit:8, Word:256, _/binary>> = Mem,
Word.
get_chunk(#heap{offset = Offs, heap = Mem}, Addr, Bytes) when Addr >= Offs ->
get_chunk(Mem, Addr - Offs, Bytes);
get_chunk(Mem, Addr, Bytes) when is_binary(Mem) ->
<<_:Addr/unit:8, Chunk:Bytes/binary, _/binary>> = Mem,
Chunk.