-module(aeb_heap). -export([ to_binary/1 , to_binary/2 , from_heap/3 , from_binary/2 , from_binary/3 , maps_with_next_id/1 , set_next_id/2 , heap_fragment/3 , heap_value/3 , heap_value/4 , heap_value_pointer/1 , heap_value_maps/1 , heap_value_offset/1 , heap_value_heap/1 , heap_fragment_maps/1 , heap_fragment_offset/1 , heap_fragment_heap/1 ]). -export_type([binary_value/0, heap_value/0, offset/0, heap_fragment/0]). -include("aeb_icode.hrl"). -include_lib("aebytecode/include/aeb_heap.hrl"). -type word() :: non_neg_integer(). -type pointer() :: word(). -opaque heap_fragment() :: #heap{}. -type offset() :: non_neg_integer(). -type binary_value() :: binary(). -type heap_value() :: {pointer(), heap_fragment()}. -spec maps_with_next_id(heap_fragment()) -> #maps{}. %% Create just a maps value, don't keep rest of Heap maps_with_next_id(#heap{maps = #maps{next_id = N}}) -> #maps{ next_id = N }. -spec set_next_id(heap_fragment(), non_neg_integer()) -> heap_fragment(). set_next_id(Heap, N) -> Heap#heap{ maps = Heap#heap.maps#maps{ next_id = N } }. %% -- data type heap_fragment -spec heap_fragment(binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment(). heap_fragment(Heap) -> heap_fragment(#maps{ next_id = 0 }, 0, Heap). -spec heap_fragment(#maps{}, offset(), binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment(). heap_fragment(Maps, Offset, Heap) -> #heap{maps = Maps, offset = Offset, heap = Heap}. -spec heap_fragment_maps(heap_fragment()) -> #maps{}. heap_fragment_maps(#heap{maps = Maps}) -> Maps. -spec heap_fragment_offset(heap_fragment()) -> offset(). heap_fragment_offset(#heap{offset = Offs}) -> Offs. -spec heap_fragment_heap(heap_fragment()) -> binary() | #{non_neg_integer() => non_neg_integer()}. heap_fragment_heap(#heap{heap = Heap}) -> Heap. %% -- data type heap_value -spec heap_value(#maps{}, pointer(), binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_value(). heap_value(Maps, Ptr, Heap) -> heap_value(Maps, Ptr, Heap, 0). -spec heap_value(#maps{}, pointer(), binary() | #{non_neg_integer() => non_neg_integer()}, offset()) -> heap_value(). heap_value(Maps, Ptr, Heap, Offs) -> {Ptr, heap_fragment(Maps, Offs, Heap)}. -spec heap_value_pointer(heap_value()) -> pointer(). heap_value_pointer({Ptr, _}) -> Ptr. -spec heap_value_maps(heap_value()) -> #maps{}. heap_value_maps({_, Heap}) -> Heap#heap.maps. -spec heap_value_offset(heap_value()) -> offset(). heap_value_offset({_, Heap}) -> Heap#heap.offset. -spec heap_value_heap(heap_value()) -> binary() | #{non_neg_integer() => non_neg_integer()}. heap_value_heap({_, Heap}) -> Heap#heap.heap. %% -- Value to binary -------------------------------------------------------- -spec to_binary(aeb_aevm_data:data()) -> aeb_aevm_data:heap(). %% Encode the data as a heap where the first word is the value (for unboxed %% types) or a pointer to the value (for boxed types). to_binary(Data) -> to_binary(Data, 0). to_binary(Data, BaseAddress) -> {Address, Memory} = to_binary1(Data, BaseAddress + 32), R = <>, R. %% Allocate the data in memory, from the given address. Return a pair %% of memory contents from that address and the value representing the %% data. to_binary1(Data,_Address) when is_integer(Data) -> {Data,<<>>}; to_binary1(Data, Address) when is_binary(Data) -> %% a string Words = aeb_memory:binary_to_words(Data), {Address,<<(size(Data)):256, << <> || W <- Words>>/binary>>}; to_binary1(none, Address) -> to_binary1({variant, 0, []}, Address); to_binary1({some, Value}, Address) -> to_binary1({variant, 1, [Value]}, Address); to_binary1(word, Address) -> to_binary1({?TYPEREP_WORD_TAG}, Address); to_binary1(string, Address) -> to_binary1({?TYPEREP_STRING_TAG}, Address); to_binary1(typerep, Address) -> to_binary1({?TYPEREP_TYPEREP_TAG}, Address); to_binary1(function, Address) -> to_binary1({?TYPEREP_FUN_TAG}, Address); to_binary1({list, T}, Address) -> to_binary1({?TYPEREP_LIST_TAG, T}, Address); to_binary1({option, T}, Address) -> to_binary1({variant, [[], [T]]}, Address); to_binary1({tuple, Ts}, Address) -> to_binary1({?TYPEREP_TUPLE_TAG, Ts}, Address); to_binary1({variant, Cons}, Address) -> to_binary1({?TYPEREP_VARIANT_TAG, Cons}, Address); to_binary1({map, K, V}, Address) -> to_binary1({?TYPEREP_MAP_TAG, K, V}, Address); to_binary1({variant, Tag, Args}, Address) -> to_binary1(list_to_tuple([Tag | Args]), Address); to_binary1(Map, Address) when is_map(Map) -> Size = maps:size(Map), %% Sort according to binary ordering KVs = lists:sort([ {to_binary(K), to_binary(V)} || {K, V} <- maps:to_list(Map) ]), {Address, <> || {K, V} <- KVs >>/binary >>}; to_binary1({}, _Address) -> {0, <<>>}; to_binary1(Data, Address) when is_tuple(Data) -> {Elems,Memory} = to_binaries(tuple_to_list(Data),Address+32*size(Data)), ElemsBin = << <> || W <- Elems>>, {Address,<< ElemsBin/binary, Memory/binary >>}; to_binary1([],_Address) -> <> = <<(-1):256>>, {Nil,<<>>}; to_binary1([H|T],Address) -> to_binary1({H,T},Address). to_binaries([],_Address) -> {[],<<>>}; to_binaries([H|T],Address) -> {HRep,HMem} = to_binary1(H,Address), {TRep,TMem} = to_binaries(T,Address+size(HMem)), {[HRep|TRep],<>}. %% Interpret a return value (a binary) using a type rep. -spec from_heap(Type :: ?Type(), Heap :: binary(), Ptr :: integer()) -> {ok, term()} | {error, term()}. from_heap(Type, Heap, Ptr) -> try {ok, from_binary(#{}, Type, Heap, Ptr)} catch _:Err -> %% io:format("** Error: from_heap failed with ~p\n ~p\n", [Err, erlang:get_stacktrace()]), {error, Err} end. %% Base address is the address of the first word of the given heap. -spec from_binary(T :: ?Type(), Heap :: binary(), BaseAddr :: non_neg_integer()) -> {ok, term()} | {error, term()}. from_binary(T, Heap = <>, BaseAddr) -> from_heap(T, <<0:BaseAddr/unit:8, Heap/binary>>, V); from_binary(_, Bin, _BaseAddr) -> {error, {binary_too_short, Bin}}. -spec from_binary(?Type(), binary()) -> {ok, term()} | {error, term()}. from_binary(T, Heap) -> from_binary(T, Heap, 0). from_binary(_, word, _, V) -> V; from_binary(_, signed_word, _, V) -> <> = <>, N; from_binary(_, bool, _, V) -> case V of 0 -> false; 1 -> true end; from_binary(_, string, Heap, V) -> StringSize = heap_word(Heap,V), BitAddr = 8*(V+32), <<_:BitAddr,Bytes:StringSize/binary,_/binary>> = Heap, Bytes; from_binary(_, {tuple, []}, _, _) -> {}; from_binary(Visited, {tuple,Cpts}, Heap, V) -> check_circular_refs(Visited, V), NewVisited = Visited#{V => true}, ElementNums = lists:seq(0, length(Cpts)-1), TypesAndPointers = lists:zip(Cpts, ElementNums), ElementAddress = fun(Index) -> V + 32 * Index end, Element = fun(Index) -> heap_word(Heap, ElementAddress(Index)) end, Convert = fun(Type, Index) -> from_binary(NewVisited, Type, Heap, Element(Index)) end, Elements = [Convert(T, I) || {T,I} <- TypesAndPointers], list_to_tuple(Elements); from_binary(Visited, {list, Elem}, Heap, V) -> <> = <<(-1):256>>, if V==Nil -> []; true -> {H,T} = from_binary(Visited, {tuple,[Elem,{list,Elem}]},Heap,V), [H|T] end; from_binary(Visited, {option, A}, Heap, V) -> from_binary(Visited, {variant_t, [{none, []}, {some, [A]}]}, Heap, V); from_binary(Visited, {variant, Cons}, Heap, V) -> Tag = heap_word(Heap, V), Args = lists:nth(Tag + 1, Cons), Visited1 = Visited#{V => true}, {variant, Tag, tuple_to_list(from_binary(Visited1, {tuple, Args}, Heap, V + 32))}; from_binary(Visited, {variant_t, TCons}, Heap, V) -> %% Tagged variants {Tags, Cons} = lists:unzip(TCons), {variant, I, Args} = from_binary(Visited, {variant, Cons}, Heap, V), Tag = lists:nth(I + 1, Tags), case Args of [] -> Tag; _ -> list_to_tuple([Tag | Args]) end; from_binary(_Visited, {map, A, B}, Heap, Ptr) -> %% FORMAT: [Size] [KeySize] Key [ValSize] Val .. [KeySize] Key [ValSize] Val Size = heap_word(Heap, Ptr), map_binary_to_value(A, B, Size, Heap, Ptr + 32); from_binary(Visited, typerep, Heap, V) -> check_circular_refs(Visited, V), Tag = heap_word(Heap, V), Arg1 = fun(T, I) -> from_binary(Visited#{V => true}, T, Heap, heap_word(Heap, V + 32 * I)) end, Arg = fun(T) -> Arg1(T, 1) end, case Tag of ?TYPEREP_WORD_TAG -> word; ?TYPEREP_STRING_TAG -> string; ?TYPEREP_TYPEREP_TAG -> typerep; ?TYPEREP_LIST_TAG -> {list, Arg(typerep)}; ?TYPEREP_TUPLE_TAG -> {tuple, Arg({list, typerep})}; ?TYPEREP_VARIANT_TAG -> {variant, Arg({list, {list, typerep}})}; ?TYPEREP_MAP_TAG -> {map, Arg(typerep), Arg1(typerep, 2)}; ?TYPEREP_FUN_TAG -> function end. map_binary_to_value(KeyType, ValType, N, Bin, Ptr) -> %% Avoid looping on bogus sizes MaxN = byte_size(Bin) div 64, Heap = heap_fragment(Bin), map_from_binary({value, KeyType, ValType}, min(N, MaxN), Heap, Ptr, #{}). map_from_binary(_, 0, _, _, Map) -> Map; map_from_binary({value, KeyType, ValType} = Output, I, Heap, Ptr, Map) -> KeySize = get_word(Heap, Ptr), KeyPtr = Ptr + 32, KeyBin = get_chunk(Heap, KeyPtr, KeySize), ValSize = get_word(Heap, KeyPtr + KeySize), ValPtr = KeyPtr + KeySize + 32, ValBin = get_chunk(Heap, ValPtr, ValSize), %% Keys and values are self contained binaries {ok, Key} = from_binary(KeyType, KeyBin), {ok, Val} = from_binary(ValType, ValBin), map_from_binary(Output, I - 1, Heap, ValPtr + ValSize, Map#{Key => Val}). check_circular_refs(Visited, V) -> case maps:is_key(V, Visited) of true -> exit(circular_references); false -> ok end. heap_word(Heap, Addr) when is_binary(Heap) -> BitSize = 8*Addr, <<_:BitSize,W:256,_/binary>> = Heap, W; heap_word(Heap, Addr) when is_map(Heap) -> 0 = Addr rem 32, %% Check that it's word aligned. maps:get(Addr, Heap, 0). get_word(#heap{offset = Offs, heap = Mem}, Addr) when Addr >= Offs -> get_word(Mem, Addr - Offs); get_word(Mem, Addr) when is_binary(Mem) -> <<_:Addr/unit:8, Word:256, _/binary>> = Mem, Word. get_chunk(#heap{offset = Offs, heap = Mem}, Addr, Bytes) when Addr >= Offs -> get_chunk(Mem, Addr - Offs, Bytes); get_chunk(Mem, Addr, Bytes) when is_binary(Mem) -> <<_:Addr/unit:8, Chunk:Bytes/binary, _/binary>> = Mem, Chunk.