Compare commits

..

No commits in common. "master" and "fortuna" have entirely different histories.

63 changed files with 2782 additions and 4797 deletions

37
.circleci/config.yml Normal file
View File

@ -0,0 +1,37 @@
version: 2.1
executors:
aebuilder:
docker:
- image: aeternity/builder
user: builder
working_directory: ~/aebytecode
jobs:
build:
executor: aebuilder
steps:
- checkout
- restore_cache:
keys:
- dialyzer-cache-v1-{{ .Branch }}-{{ .Revision }}
- dialyzer-cache-v1-{{ .Branch }}-
- dialyzer-cache-v1-
- run:
name: Build
command: rebar3 compile
- run:
name: Static Analysis
command: make dialyzer
- run:
name: Eunit
command: make eunit
- run:
name: Common Tests
command: make test
- save_cache:
key: dialyzer-cache-v1-{{ .Branch }}-{{ .Revision }}
paths:
- _build/default/rebar3_20.3.8_plt
- store_artifacts:
path: _build/test/logs

View File

@ -1,15 +0,0 @@
name: Gajumaru Bytecode Tests
run-name: ${{ gitea.actor }} testing Gajumaru Bytecode
on: [push, workflow_dispatch]
jobs:
tests:
runs-on: linux_amd64
steps:
- name: Check out repository code
uses: actions/checkout@v3
- name: test
run: |
. /home/act_runner/.erts/27.2.1/activate
make dialyzer
make eunit

25
.gitignore vendored
View File

@ -8,21 +8,12 @@ ebin/*.beam
rel/example_project
.concrete/DEV_MODE
.rebar
gmb_asm_scan.erl
gmb_fate_asm_scan.erl
gmb_fate_asm_scan.xrl
aeb_asm_scan.erl
aeb_fate_asm_scan.erl
aeb_fate_asm_scan.xrl
_build/
gmfateasm
include/gmb_fate_opcodes.hrl
src/gmb_fate_opcodes.erl
src/gmb_fate_ops.erl
src/gmb_fate_pp.erl
*.erl~
*.hrl~
*.aes~
doc
cover
gmfate
current_counterexample.eqc
.rebar3
ebin/*.beam
aefateasm
include/aeb_fate_opcodes.hrl
src/aeb_fate_code.erl
src/aeb_fate_opcodes.erl
src/aeb_fate_pp.erl

View File

@ -1 +0,0 @@
{"src/*", [debug_info, {i, "include/"}, {outdir, "ebin/"}]}.

View File

@ -1,6 +1,5 @@
ISC License
Copyright (c) 2025, QPQ AG
Copyright (c) 2017, aeternity developers
Permission to use, copy, modify, and/or distribute this software for any

View File

@ -1,6 +1,6 @@
GENERATED_SRC = src/gmb_fate_opcodes.erl src/gmb_fate_ops.erl include/gmb_fate_opcodes.hrl src/gmb_fate_asm_scan.xrl src/gmb_fate_pp.erl
GENERATOR_DEPS = ebin/gmb_fate_generate_ops.beam src/gmb_fate_asm_scan.template
REBAR ?= ./rebar3
GENERATED_SRC = src/aeb_fate_opcodes.erl src/aeb_fate_code.erl include/aeb_fate_opcodes.hrl src/aeb_fate_asm_scan.xrl src/aeb_fate_pp.erl
GENERATOR_DEPS = ebin/aeb_fate_generate_ops.beam src/aeb_fate_asm_scan.template
REBAR ?= rebar3
all: local
@ -15,8 +15,7 @@ console: local
clean:
@$(REBAR) clean
rm -f $(GENERATED_SRC)
rm -f ebin/*.beam
rm -rf _build
rm -f ebin/*
dialyzer: local
@$(REBAR) as local dialyzer
@ -31,7 +30,7 @@ test: local
@$(REBAR) as local eunit
ebin/%.beam: src/%.erl
erlc +debug_info -o $(dir $@) $<
erlc -o $(dir $@) $<
$(GENERATED_SRC): $(GENERATOR_DEPS)
erl -pa ebin/ -noshell -s gmb_fate_generate_ops gen_and_halt src/ include/
erl -pa ebin/ -noshell -s aeb_fate_generate_ops gen_and_halt src/ include/

View File

@ -1,7 +1,7 @@
# gmbytecode
A library and stand alone assembler for Gajumaru bytecode.
# aebytecode
An library and stand alone assembler for aeternity bytecode.
This version supports AEVM bytecode and FATE bytecode.
This version supports Aevm bytecode and Fate bytecode.
## Build
@ -19,7 +19,7 @@ Fate code exists in 3 formats:
3. Internal. This is an Erlang representation of fate code
Used by this particular engin implementation.
This library handles all three representations.
This library handles all tree representations.
The byte code format is described in a separate document.
The internal format is described in a separate document.
The text representation is described below.
@ -49,7 +49,7 @@ or start with stack followed by an integer
`stack1`
`a`
Immediate values can be of 10 types:
Immediate values can be of 9 types:
1. Integers as decimals: {Digits} or -{Digits}
`42`
@ -57,24 +57,8 @@ Immediate values can be of 10 types:
And integers as Hexadecimals:: 0x{Hexdigits}
`0x0deadbeef0`
2. Chain Objects. These are all addresses to different types of chain objects.
Each address is a 256 bits number encoded in base58 with checksum
with a prefix of "@" plus a type prefix followed by "_".
2a. Account Address: a base58c encoded number starting with @ak_ followed by a number of base58chars
'@ak_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
2b. Contract address: @ct_{base58char}+
`@ct_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
2c. Oracle address: @ok_{base58char}+
`@ok_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
2d. Oracle query: @oq_{base58char}+
`@oq_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
2e. Channel address: @ch_{base58char}+
`@ch_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
2. addresses, a base58 encoded string starting with # followed by a number of base58chars
`#nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv`
3. Boolean true or false
`true`
@ -101,15 +85,8 @@ Immediate values can be of 10 types:
`()`
`(1, "foo")`
9. Variants: (| [Arities] | Tag | ( Elements ) |)
`(| [1,3,5,2] | 3 | ( "foo", 12) |)`
10. Bytes: #{base64char}+
`#AQIDCioLFQ==`
11. Contract bytearray (code of another smart contract)
`@cb_+PJGA6A4Fz4T2LHV5knITCldR3rqO7HrXO2zhOAR9JWNbhf8Q8C4xbhx/gx8JckANwAXfQBVACAAAP4vhlvZADcABwECgv5E1kQfADcBBzcACwAWMBReAHMAFjBvJFMAFjBvggOoFAAUABQSggABAz/+tIwWhAA3AAdTAAD+1jB5kAQ3AAcLAAD+6MRetgA3AQc3ABoGggABAz+4TS8GEQx8JclFY2FsbGVyX2lzX2NyZWF0b3IRL4Zb2Q1nZXQRRNZEHxFpbml0EbSMFoQdYmFsYW5jZRHWMHmQFXZhbHVlEejEXrYNc2V0gi8AhTQuMy4wAUqQ8s4=`
9. Variants: (| Size | Tag | ( Elements ) |)
`(| 42 | 12 | ( "foo", 12) |)`
Where
@ -119,8 +96,6 @@ Hexdigits: [0123456789abcdef]
base58char: [123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]
base64char: [ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxy0123456789+/=]
Characters: any printable ascii character 0..255 (except " no quoting yet)
Key: any value except for a map

0
ebin/.gitkeep Normal file
View File

View File

@ -1,16 +0,0 @@
{application,gmbytecode,
[{description,"Bytecode definitions, serialization and deserialization for the Gajumaru."},
{vsn,"3.4.1"},
{registered,[]},
{applications,[kernel,stdlib,eblake2,gmserialization,getopt]},
{env,[]},
{modules,[gmb_aevm_abi,gmb_aevm_data,gmb_asm,gmb_asm_scan,
gmb_disassemble,gmb_fate_abi,gmb_fate_asm,
gmb_fate_asm_scan,gmb_fate_code,gmb_fate_data,
gmb_fate_encoding,gmb_fate_generate_docs,
gmb_fate_generate_ops,gmb_fate_maps,gmb_fate_opcodes,
gmb_fate_ops,gmb_fate_pp,gmb_heap,gmb_memory,
gmb_opcodes,gmb_primops,gmfateasm]},
{maintainers,[]},
{licenses,[]},
{links,[]}]}.

55
include/aeb_fate_data.hrl Normal file
View File

@ -0,0 +1,55 @@
-define(FATE_INTEGER_T, integer()).
-define(FATE_BYTE_T, 0..255).
-define(FATE_BOOLEAN_T, true | false).
-define(FATE_NIL_T, []).
-define(FATE_LIST_T, list()).
-define(FATE_UNIT_T, {tuple, {}}).
-define(FATE_MAP_T, #{ fate_type() => fate_type() }).
-define(FATE_STRING_T, binary()).
-define(FATE_ADDRESS_T, {address, <<_:256>>}).
-define(FATE_VARIANT_T, {variant, ?FATE_BYTE_T, ?FATE_BYTE_T, tuple()}).
-define(FATE_VOID_T, void).
-define(FATE_TUPLE_T, {tuple, tuple()}).
-define(FATE_BITS_T, {bits, integer()}).
-define(IS_FATE_INTEGER(X), is_integer(X)).
-define(IS_FATE_LIST(X), (is_list(X))).
-define(IS_FATE_STRING(X), (is_binary(X))).
-define(IS_FATE_MAP(X), (is_map(X))).
-define(IS_FATE_TUPLE(X), (is_tuple(X) andalso (tuple == element(1, X) andalso is_tuple(element(2, X))))).
-define(IS_FATE_ADDRESS(X), (is_tuple(X) andalso (address == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_BITS(X), (is_tuple(X) andalso (bits == element(1, X) andalso is_integer(element(2, X))))).
-define(IS_FATE_VARIANT(X), (is_tuple(X)
andalso
(variant == element(1, X)
andalso is_integer(element(2, X))
andalso is_integer(element(3, X))
andalso is_tuple(element(4, X))
))).
-define(IS_FATE_BOOLEAN(X), is_boolean(X)).
-define(FATE_UNIT, {tuple, {}}).
-define(FATE_TUPLE(T), {tuple, T}).
-define(FATE_ADDRESS(A), {address, A}).
-define(FATE_BITS(B), {bits, B}).
-define(FATE_INTEGER_VALUE(X), (X)).
-define(FATE_LIST_VALUE(X), (X)).
-define(FATE_STRING_VALUE(X), (X)).
-define(FATE_ADDRESS_VALUE(X), (element(2, X))).
-define(FATE_MAP_VALUE(X), (X)).
-define(FATE_MAP_SIZE(X), (map_size(X))).
-define(FATE_STRING_SIZE(X), (byte_size(X))).
-define(FATE_TRUE, true).
-define(FATE_FALSE, false).
-define(FATE_NIL, []).
-define(FATE_VOID, void).
-define(FATE_EMPTY_STRING, <<>>).
-define(FATE_STRING(S), S).
-define(FATE_VARIANT(Size, Tag,T), {variant, Size, Tag, T}).
-define(MAKE_FATE_INTEGER(X), X).
-define(MAKE_FATE_LIST(X), X).
-define(MAKE_FATE_MAP(X), X).
-define(MAKE_FATE_STRING(X), X).

View File

@ -30,7 +30,6 @@
-define( 'SHA3', 16#20).
-define( 'CREATOR', 16#2f).
-define( 'ADDRESS', 16#30).
-define( 'BALANCE', 16#31).
-define( 'ORIGIN', 16#32).
@ -166,8 +165,6 @@
-define(PRIM_CALL_ORACLE_GET_ANSWER, 104).
-define(PRIM_CALL_ORACLE_GET_QUESTION, 105).
-define(PRIM_CALL_ORACLE_QUERY_FEE, 106).
-define(PRIM_CALL_ORACLE_CHECK, 110).
-define(PRIM_CALL_ORACLE_CHECK_QUERY, 111).
-define(PRIM_CALL_IN_AENS_RANGE(__TTYPE__), (((__TTYPE__) > 199) andalso ((__TTYPE__) < 300))).
-define(PRIM_CALL_AENS_RESOLVE, 200).
@ -186,20 +183,9 @@
-define(PRIM_CALL_MAP_TOLIST, 305).
-define(PRIM_CALL_IN_CRYPTO_RANGE(__TTYPE__), (((__TTYPE__) > 399) andalso ((__TTYPE__) < 500))).
-define(PRIM_CALL_CRYPTO_VERIFY_SIG, 400).
-define(PRIM_CALL_CRYPTO_SHA3, 401).
-define(PRIM_CALL_CRYPTO_SHA256, 402).
-define(PRIM_CALL_CRYPTO_BLAKE2B, 403).
-define(PRIM_CALL_CRYPTO_SHA256_STRING, 404).
-define(PRIM_CALL_CRYPTO_BLAKE2B_STRING, 405).
-define(PRIM_CALL_CRYPTO_VERIFY_SIG_SECP256K1, 410).
-define(PRIM_CALL_CRYPTO_ECVERIFY_SECP256K1, 420).
-define(PRIM_CALL_CRYPTO_ECRECOVER_SECP256K1, 421).
-define(PRIM_CALL_IN_AUTH_RANGE(__TTYPE__), (((__TTYPE__) > 499) andalso ((__TTYPE__) < 600))).
-define(PRIM_CALL_AUTH_TX_HASH, 500).
-define(PRIM_CALL_IN_ADDRESS_RANGE(__TTYPE__), (((__TTYPE__) > 599) andalso ((__TTYPE__) < 700))).
-define(PRIM_CALL_ADDR_IS_ORACLE, 600).
-define(PRIM_CALL_ADDR_IS_CONTRACT, 601).
-define(PRIM_CALL_ADDR_IS_PAYABLE, 610).
-define(PRIM_CALL_CRYPTO_ECVERIFY, 400).
-define(PRIM_CALL_CRYPTO_SHA3, 401).
-define(PRIM_CALL_CRYPTO_SHA256, 402).
-define(PRIM_CALL_CRYPTO_BLAKE2B, 403).
-define(PRIM_CALL_CRYPTO_SHA256_STRING, 404).
-define(PRIM_CALL_CRYPTO_BLAKE2B_STRING, 405).

View File

@ -1,99 +0,0 @@
-define(FATE_INTEGER_T, integer()).
-define(FATE_BYTE_T, 0..255).
-define(FATE_BOOLEAN_T, true | false).
-define(FATE_NIL_T, []).
-define(FATE_LIST_T, list()).
-define(FATE_UNIT_T, {tuple, {}}).
-define(FATE_MAP_T, #{ fate_type() => fate_type() }).
-define(FATE_STORE_MAP_T, {store_map, #{ fate_type() => fate_type() | ?FATE_MAP_TOMBSTONE }, integer()}).
-define(FATE_STRING_T, binary()).
-define(FATE_ADDRESS_T, {address, <<_:256>>}).
-define(FATE_BYTES_T(N), {bytes, binary()}).
-define(FATE_CONTRACT_T, {contract, <<_:256>>}).
-define(FATE_ORACLE_T, {oracle, <<_:256>>}).
-define(FATE_ORACLE_Q_T, {oracle_query, <<_:256>>}).
-define(FATE_CHANNEL_T, {channel, <<_:256>>}).
-define(FATE_VARIANT_T, {variant, [byte()], ?FATE_BYTE_T, tuple()}).
-define(FATE_VOID_T, void).
-define(FATE_TUPLE_T, {tuple, tuple()}).
-define(FATE_BITS_T, {bits, integer()}).
-define(FATE_TYPEREP_T, {typerep, fate_type_type()}).
-define(FATE_CONTRACT_BYTEARRAY_T, {contract_bytearray, binary()}).
-define(IS_FATE_INTEGER(X), (is_integer(X))).
-define(IS_FATE_LIST(X), (is_list(X))).
-define(IS_FATE_STRING(X), (is_binary(X))).
-define(IS_FATE_STORE_MAP(X), (is_tuple(X) andalso tuple_size(X) == 3
andalso store_map == element(1, X)
andalso is_map(element(2, X))
andalso is_integer(element(3, X)))).
-define(IS_FATE_MAP(X), (is_map(X))).
-define(IS_FATE_TUPLE(X), (is_tuple(X) andalso (tuple == element(1, X) andalso is_tuple(element(2, X))))).
-define(IS_FATE_ADDRESS(X), (is_tuple(X) andalso (address == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_BYTES(X), (is_tuple(X) andalso (bytes == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_BYTES(N, X), (?IS_FATE_BYTES(X) andalso byte_size(element(2, X)) == (N))).
-define(IS_FATE_CONTRACT(X), (is_tuple(X) andalso (contract == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_ORACLE(X), (is_tuple(X) andalso (oracle == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_ORACLE_Q(X), (is_tuple(X) andalso (oracle_query == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_CHANNEL(X), (is_tuple(X) andalso (channel == element(1, X) andalso is_binary(element(2, X))))).
-define(IS_FATE_BITS(X), (is_tuple(X) andalso (bits == element(1, X) andalso is_integer(element(2, X))))).
-define(IS_FATE_VARIANT(X), (is_tuple(X)
andalso
(variant == element(1, X)
andalso is_list(element(2, X))
andalso is_integer(element(3, X))
andalso is_tuple(element(4, X))
))).
-define(IS_FATE_BOOLEAN(X), is_boolean(X)).
-define(IS_FATE_TYPEREP(X), (is_tuple(X) andalso tuple_size(X) =:= 2 andalso element(1, X) =:= typerep)).
-define(IS_FATE_CONTRACT_BYTEARRAY(X), (is_tuple(X) andalso tuple_size(X) =:= 2 andalso element(1, X) =:= contract_bytearray
andalso is_binary(element(2, X)))).
-define(FATE_UNIT, {tuple, {}}).
-define(FATE_TUPLE(T), {tuple, T}).
-define(FATE_ADDRESS(A), {address, A}).
-define(FATE_BYTES(X), {bytes, X}).
-define(FATE_CONTRACT(X), {contract, X}).
-define(FATE_ORACLE(X), {oracle, X}).
-define(FATE_ORACLE_Q(X), {oracle_query, X}).
-define(FATE_CHANNEL(X), {channel, X}).
-define(FATE_BITS(B), {bits, B}).
-define(FATE_TYPEREP(T), {typerep, T}).
-define(FATE_STORE_MAP(Cache, Id), {store_map, Cache, Id}).
-define(FATE_MAP_TOMBSTONE, '__DELETED__').
-define(FATE_INTEGER_VALUE(X), (X)).
-define(FATE_BOOLEAN_VALUE(X), (X)).
-define(FATE_LIST_VALUE(X), (X)).
-define(FATE_TUPLE_ELEMENTS(X), (tuple_to_list(element(2, X)))).
-define(FATE_STRING_VALUE(X), (X)).
-define(FATE_ADDRESS_VALUE(X), (element(2, X))).
-define(FATE_BYTES_VALUE(X), (element(2, X))).
-define(FATE_CONTRACT_VALUE(X), (element(2, X))).
-define(FATE_ORACLE_VALUE(X), (element(2, X))).
-define(FATE_CHANNEL_VALUE(X), (element(2, X))).
-define(FATE_BITS_VALUE(X), (element(2, X))).
-define(FATE_MAP_VALUE(X), (X)).
-define(FATE_STORE_MAP_CACHE(X), (element(2, X))).
-define(FATE_STORE_MAP_ID(X), (element(3, X))).
-define(FATE_MAP_SIZE(X), (map_size(X))).
-define(FATE_STRING_SIZE(X), (byte_size(X))).
-define(FATE_CONTRACT_BYTEARRAY_SIZE(X), (byte_size(X))).
-define(FATE_TRUE, true).
-define(FATE_FALSE, false).
-define(FATE_NIL, []).
-define(FATE_VOID, void).
-define(FATE_EMPTY_STRING, <<>>).
-define(FATE_STRING(S), S).
-define(FATE_VARIANT(Arity, Tag,T), {variant, Arity, Tag, T}).
-define(FATE_CONTRACT_BYTEARRAY(B), {contract_bytearray, B}).
% Result of gmb_fate_code:symbol_identifier(<<"init">>).
% Stored here to avoid repeated calls to eblake2
-define(FATE_INIT_ID, <<68,214,68,31>>).
-define(MAKE_FATE_INTEGER(X), X).
-define(MAKE_FATE_LIST(X), X).
-define(MAKE_FATE_MAP(X), X).
-define(MAKE_FATE_STRING(X), X).
-define(MAKE_FATE_CONTRACT_BYTEARRAY(X), {contract_bytearray, X}).

View File

@ -1,15 +0,0 @@
-record(pmap, {key_t :: gmb_aevm_data:type(),
val_t :: gmb_aevm_data:type(),
parent :: none | non_neg_integer(),
size = 0 :: non_neg_integer(),
data :: #{gmb_heap:binary_value() => gmb_heap:binary_value() | tombstone}
| stored}).
-record(maps, { maps = #{} :: #{ non_neg_integer() => #pmap{} }
, next_id = 0 :: non_neg_integer() }).
-record(heap, { maps :: #maps{},
offset :: gmb_heap:offset(),
heap :: binary() | #{non_neg_integer() => non_neg_integer()} }).

View File

@ -1,12 +0,0 @@
-define(Type(), gmb_aevm_data:type()).
-define(TYPEREP_WORD_TAG, 0).
-define(TYPEREP_STRING_TAG, 1).
-define(TYPEREP_LIST_TAG, 2).
-define(TYPEREP_TUPLE_TAG, 3).
-define(TYPEREP_VARIANT_TAG, 4).
-define(TYPEREP_TYPEREP_TAG, 5).
-define(TYPEREP_MAP_TAG, 6).
-define(TYPEREP_FUN_TAG, 7).
-define(TYPEREP_CONTRACT_BYTEARRAY_TAG,8).

View File

@ -1,27 +0,0 @@
%%% @author Thomas Arts
%%% @doc Allow to run QuickCheck tests as eunit tests
%%% `rebar3 as eqc eunit --cover`
%%% or `rebar3 as eqc eunit --module=gmb_fate_code`
%%% Note that for obtainign cover file, one needs `rebar3 as eqc cover
%%%
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts <thomas@SpaceGrey.lan>
-module(gmb_fate_code_tests).
-include_lib("eunit/include/eunit.hrl").
-compile([export_all, nowarn_export_all]).
-define(EQC_EUNIT(Module, PropName, Ms),
{ atom_to_list(PropName),
{timeout, (Ms * 10) div 1000, ?_assert(eqc:quickcheck(eqc:testing_time(Ms / 1000, Module:PropName())))}}).
quickcheck_test_() ->
{setup, fun() -> eqc:start() end,
[ ?EQC_EUNIT(gmfate_code_eqc, prop_opcodes, 200),
?EQC_EUNIT(gmfate_code_eqc, prop_serializes, 3000),
?EQC_EUNIT(gmfate_code_eqc, prop_fail_serializes, 3000),
?EQC_EUNIT(gmfate_code_eqc, prop_fuzz, 3000)
]}.

View File

@ -1,27 +0,0 @@
%%% @author Thomas Arts
%%% @doc Allow to run QuickCheck tests as eunit tests
%%% `rebar3 as eqc eunit --cover`
%%% or `rebar3 as eqc eunit --module=gmb_fate_data`
%%% Note that for obtainign cover file, one needs `rebar3 as eqc cover
%%%
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts <thomas@SpaceGrey.lan>
-module(gmb_fate_data_tests).
-include_lib("eunit/include/eunit.hrl").
-compile([export_all, nowarn_export_all]).
-define(EQC_EUNIT(Module, PropName, Ms),
{ atom_to_list(PropName),
{timeout, (Ms * 3) / 1000, ?_assert(eqc:quickcheck(eqc:testing_time(Ms / 1000, Module:PropName())))}}).
quickcheck_test_() ->
{setup, fun() -> eqc:start() end,
[ ?EQC_EUNIT(gmfate_eqc, prop_roundtrip, 500),
?EQC_EUNIT(gmfate_eqc, prop_format_scan, 2000),
?EQC_EUNIT(gmfate_eqc, prop_order, 2000),
?EQC_EUNIT(gmfate_eqc, prop_fuzz, 2000)
]}.

View File

@ -1,27 +0,0 @@
%%% @author Thomas Arts
%%% @doc Allow to run QuickCheck tests as eunit tests
%%% `rebar3 as eqc eunit --cover`
%%% or `rebar3 as eqc eunit --module=gmb_fate_encoding`
%%% Note that for obtaining cover file, one needs `rebar3 as eqc cover
%%%
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts
-module(gmb_fate_encoding_tests).
-include_lib("eunit/include/eunit.hrl").
-compile([export_all, nowarn_export_all]).
-define(EQC_EUNIT(Module, PropName, Ms),
{ atom_to_list(PropName),
{timeout, (Ms * 3) / 1000, ?_assert(eqc:quickcheck(eqc:testing_time(Ms / 1000, Module:PropName())))}}).
quickcheck_test_() ->
{setup, fun() -> eqc:start() end,
[ ?EQC_EUNIT(gmfate_type_eqc, prop_roundtrip, 1000),
?EQC_EUNIT(gmfate_eqc, prop_serializes, 1000),
?EQC_EUNIT(gmfate_eqc, prop_no_maps_in_keys, 1000),
?EQC_EUNIT(gmfate_eqc, prop_idempotent, 1000)
]}.

View File

@ -1,167 +0,0 @@
%%% @author Thomas Arts
%%% @doc Use `rebar3 as eqc shell` to run properties in the shell
%%%
%%% We want to be sure that we can deserialize all FATE assembler that is accepted on chain.
%%%
%%% We test something slightly weaker here,
%%% viz. All FATE assembler we serialize, we can deserialize
%%%
%%% Negative testing modelled:
%%% Failure 1: function names differ from 4 bytes
%%% Failure 2: pointer to empty code block
%%% Failure 3: end_BB operation as not ending block or not at end of block
%%% - empty code blocks
%%% - blocks that are not of the form (not end_bb)* end_bb.
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts <thomas@SpaceGrey.lan>
-module(gmfate_code_eqc).
-include_lib("eqc/include/eqc.hrl").
-compile([export_all, nowarn_export_all]).
%%-define(Failure(Failures, Number), case lists:member(Number, Failures) of true -> 1; false -> 0 end)
prop_serializes() ->
in_parallel(
?FORALL(FateCode, fate_code(0),
begin
{T0, Binary} = timer:tc(fun() -> gmb_fate_code:serialize(FateCode) end),
?WHENFAIL(eqc:format("serialized:\n ~120p~n", [Binary]),
begin
{T1, Decoded} = timer:tc(fun() -> gmb_fate_code:deserialize(Binary) end),
measure(binary_size, size(Binary),
measure(serialize, T0 / 1000,
measure(deserialize, T1 / 1000,
conjunction([{equal, equals(Decoded, FateCode)},
{serialize_time, T0 / 1000 < 500},
{deserialize_time, T1 / 1000 < 500}]))))
end)
end)).
prop_fail_serializes() ->
conjunction([{Failure, eqc:counterexample(
?FORALL(FateCode, fate_code(Failure),
?FORALL(Binary, catch gmb_fate_code:serialize(FateCode),
is_binary(Binary))))
=/= true} || Failure <- [1, 2, 3, 4, 5] ]).
prop_fuzz() ->
in_parallel(
?FORALL(Binary, ?LET(FateCode, fate_code(0), gmb_fate_code:serialize(FateCode)),
?FORALL(FuzzedBin, fuzz(Binary),
try gmb_fate_code:deserialize(FuzzedBin) of
Code ->
?WHENFAIL(eqc:format("Code:\n ~p\n", [Code]),
begin
Bin1 = gmb_fate_code:serialize(Code),
Code1 = gmb_fate_code:deserialize(Bin1),
?WHENFAIL(eqc:format("Reserialized\n ~120p\n", [Bin1]),
equals(Code, Code1))
end)
catch _:_ -> true
end))).
prop_opcodes() ->
?FORALL(Opcode, choose(0, 16#ff),
try M = gmb_fate_opcodes:mnemonic(Opcode),
?WHENFAIL(eqc:format("opcode ~p -> ~p", [Opcode, M]),
conjunction([{valid, lists:member(Opcode, valid_opcodes())},
{eq, equals(gmb_fate_opcodes:m_to_op(M), Opcode)}]))
catch
_:_ ->
not lists:member(Opcode, valid_opcodes())
end).
valid_opcodes() ->
[ Op || #{opcode := Op} <- gmb_fate_generate_ops:get_ops() ].
fate_code(Failure) ->
?SIZED(Size,
?LET({FMap, SMap, AMap},
{non_empty(map(if Failure == 1 -> binary(1);
true -> binary(4) end,
{sublist(lists:sort([private, payable])), %% deserialize sorts them
{list(gmfate_type_eqc:fate_type(Size div 3)), gmfate_type_eqc:fate_type(Size div 3)}, bbs_code(Failure)})),
small_map(small_fate_data_key(5), small_fate_data(4)),
small_map(small_fate_data_key(5), small_fate_data(4))},
gmb_fate_code:update_annotations(
gmb_fate_code:update_symbols(
gmb_fate_code:update_functions(
gmb_fate_code:new(), FMap), SMap), AMap))).
short_list(Max, Gen) ->
?LET(N, choose(0, Max), eqc_gen:list(N, Gen)).
small_map(KeyGen, ValGen) ->
?LET(KeyVals, short_list(6, {KeyGen, ValGen}),
return(maps:from_list(KeyVals))).
bbs_code(Failure) ->
frequency([{if Failure == 2 -> 5; true -> 0 end, #{0 => []}},
{10, ?LET(BBs, short_list(6, bb_code(Failure)),
maps:from_list(
lists:zip(lists:seq(0, length(BBs)-1), BBs)))}]).
bb_code(Failure) ->
EndBB = [ Op || Op <- valid_opcodes(), gmb_fate_opcodes:end_bb(Op) ],
NonEndBB = valid_opcodes() -- EndBB,
frequency(
[{if Failure == 3 -> 5; true -> 0 end, ?LET(Ops, non_empty(short_list(6, elements(NonEndBB))), bblock(Failure, Ops))},
{if Failure == 4 -> 5; true -> 0 end, ?LET({Ops, Op}, {short_list(6, elements(valid_opcodes())), elements(EndBB)}, bblock(Failure, Ops ++ [Op]))},
{10, ?LET({Ops, Op}, {short_list(6, elements(NonEndBB)), elements(EndBB)},
bblock(Failure, Ops ++ [Op]))}]).
bblock(Failure, Ops) ->
[ begin
Mnemonic = gmb_fate_opcodes:mnemonic(Op),
Arity = gmb_fate_opcodes:args(Op),
case Arity of
0 -> Mnemonic;
_ -> list_to_tuple([Mnemonic |
[ frequency([{if Failure == 5 -> 5; true -> 0 end, {stack, nat()}},
{5, {stack, 0}},
{5, {arg, nat()}},
{5, {var, nat()}},
{5, {immediate, small_fate_data(4)}}]) ||
_ <- lists:seq(1, Arity) ]])
end
end || Op <- Ops ].
fuzz(Binary) ->
?LET({N, Inj}, {choose(0, byte_size(Binary) - 1), choose(0, 255)},
begin
M = N * 8,
<<X:M, _:8, Z/binary>> = Binary,
<<X:M, Inj:8, Z/binary>>
end).
prop_small() ->
?FORALL(Value, small_fate_data(4),
begin
Bin = gmb_fate_encoding:serialize(Value),
Size = byte_size(Bin),
measure(size, Size,
?WHENFAIL(eqc:format("Size: ~p\n", [Size]),
Size < 1000))
end).
prop_small_type() ->
?FORALL(Type, ?SIZED(Size, gmfate_type_eqc:fate_type(Size div 3)),
begin
Bin = iolist_to_binary(gmb_fate_encoding:serialize_type(Type)),
Size = byte_size(Bin),
measure(size, Size,
?WHENFAIL(eqc:format("Size: ~p\n", [Size]),
Size < 1000))
end).
small_fate_data(N) ->
?SIZED(Size, resize(Size div N, gmfate_eqc:fate_data())).
small_fate_data_key(N) ->
?SIZED(Size, ?LET(Data, gmfate_eqc:fate_data(Size div N, []), eqc_symbolic:eval(Data))).

View File

@ -1,211 +0,0 @@
%%% @author Thomas Arts
%%% @doc Use `rebar3 as eqc shell` to run properties in the shell
%%%
%%% We need to be able to generate data that serializes with ?LONG_LIST, ?LONG_TUPLE etc.
%%% In other words make some rather broad terms as well as some deep terms
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts <thomas@SpaceGrey.lan>
-module(gmfate_eqc).
-include_lib("eqc/include/eqc.hrl").
-include("../include/gmb_fate_data.hrl").
-compile([export_all, nowarn_export_all]).
prop_roundtrip() ->
?FORALL(FateData, fate_data(),
measure(bytes, size(term_to_binary(FateData)),
begin
Serialized = gmb_fate_encoding:serialize(FateData),
?WHENFAIL(eqc:format("Serialized ~p to ~p~n", [FateData, Serialized]),
equals(gmb_fate_encoding:deserialize(Serialized), FateData))
end)).
prop_format_scan() ->
?FORALL(FateData, fate_data([variant, map]),
?WHENFAIL(eqc:format("Trying to format ~p failed~n", [FateData]),
begin
String = gmb_fate_data:format(FateData),
{ok, _Scanned, _} = gmb_fate_asm_scan:scan(unicode:characters_to_list(String)),
true
end)).
prop_serializes() ->
?FORALL({Data, Garbage}, {fate_data(), binary()},
?WHENFAIL(eqc:format("Trying to serialize/deserialize ~p failed~n", [Data]),
begin
Binary = <<(gmb_fate_encoding:serialize(Data))/binary, Garbage/binary>>,
{FateData, Rest} = gmb_fate_encoding:deserialize_one(Binary),
measure(binary_size, size(Binary),
conjunction([{equal, equals(Data, FateData)},
{rest, equals(Garbage, Rest)},
{size, size(Binary) < 500000}]))
end)).
prop_no_maps_in_keys() ->
?FORALL(FateData, fate_bad_map(), %% may contain a map in its keys
begin
HasMapInKeys = lists:any(fun(K) -> has_map(K) end, maps:keys(FateData)),
try gmb_fate_encoding:serialize(FateData),
?WHENFAIL(eqc:format("Should not serialize, contains a map in key\n", []),
not HasMapInKeys)
catch error:Reason ->
?WHENFAIL(eqc:format("(~p) Should serialize\n", [Reason]), HasMapInKeys)
end
end).
prop_fuzz() ->
in_parallel(
?FORALL(Binary, ?LET(FateData, ?SIZED(Size, resize(Size div 4, fate_data())), gmb_fate_encoding:serialize(FateData)),
?FORALL(InjectedBin, injection(Binary),
try Org = gmb_fate_encoding:deserialize(InjectedBin),
NewBin = gmb_fate_encoding:serialize(Org),
NewOrg = gmb_fate_encoding:deserialize(NewBin),
measure(success, 1,
?WHENFAIL(eqc:format("Deserialize ~p gives\n~p\nSerializes to ~p\n", [InjectedBin, Org, NewOrg]),
equals(NewBin, InjectedBin)))
catch _:_ ->
true
end))).
prop_order() ->
?FORALL(Items, vector(3, fate_data([variant, map])),
begin
%% Use lt to take minimum
Min = lt_min(Items),
Max = lt_max(Items),
conjunction([ {minimum, is_empty([ {Min, '>', I} || I<-Items, gmb_fate_data:lt(I, Min)])},
{maximum, is_empty([ {Max, '<', I} || I<-Items, gmb_fate_data:lt(Max, I)])},
{asym, gmb_fate_data:lt(Min, Max) orelse Min == Max}])
end).
lt_min([X, Y | Rest]) ->
case gmb_fate_data:lt(X, Y) of
true -> lt_min([X | Rest]);
false -> lt_min([Y| Rest])
end;
lt_min([X]) -> X.
lt_max([X, Y | Rest]) ->
case gmb_fate_data:lt(X, Y) of
true -> lt_max([Y | Rest]);
false -> lt_max([X| Rest])
end;
lt_max([X]) -> X.
prop_idempotent() ->
?FORALL(Items, list({fate_data_key(), fate_data()}),
equals(gmb_fate_encoding:sort(Items),
gmb_fate_encoding:sort(gmb_fate_encoding:sort(Items)))).
fate_data(Kind) ->
?SIZED(Size, ?LET(Data, fate_data(Size, Kind), eqc_symbolic:eval(Data))).
fate_data() ->
fate_data([map, variant, store_map]).
%% keys may contain variants but no maps
fate_data_key() ->
fate_data([variant]).
fate_data(0, Options) ->
?LAZY(
frequency(
[{50, oneof([fate_integer(), fate_boolean(), fate_nil(), fate_unit()])},
{10, oneof([fate_string(), fate_address(), fate_bytes(), fate_contract(),
fate_oracle(), fate_oracle_q(), fate_bits(), fate_channel()])}] ++
[{1, fate_store_map()} || lists:member(store_map, Options)]));
fate_data(Size, Options) ->
?LAZY(
oneof([fate_data(0, Options),
fate_list(Size, Options),
fate_tuple(Size, Options)] ++
[fate_variant(Size, Options)
|| lists:member(variant, Options)] ++
[fate_map(Size, Options)
|| lists:member(map, Options)])).
fate_integer() -> ?LET(X, oneof([int(), largeint()]), return(gmb_fate_data:make_integer(X))).
fate_bits() -> ?LET(X, oneof([int(), largeint()]), return(gmb_fate_data:make_bits(X))).
fate_boolean() -> ?LET(X, elements([true, false]), return(gmb_fate_data:make_boolean(X))).
fate_nil() -> gmb_fate_data:make_list([]).
fate_unit() -> gmb_fate_data:make_unit().
fate_string() -> ?LET(X, frequency([{10, non_quote_string()}, {2, list(non_quote_string())},
{1, ?LET(N, choose(64-3, 64+3), vector(N, $a))}]),
return(gmb_fate_data:make_string(X))).
fate_address() -> ?LET(X, binary(256 div 8), return(gmb_fate_data:make_address(X))).
fate_bytes() -> ?LET(X, non_empty(binary()), return(gmb_fate_data:make_bytes(X))).
fate_contract() -> ?LET(X, binary(256 div 8), return(gmb_fate_data:make_contract(X))).
fate_oracle() -> ?LET(X, binary(256 div 8), return(gmb_fate_data:make_oracle(X))).
fate_oracle_q() -> ?LET(X, binary(256 div 8), return(gmb_fate_data:make_oracle_query(X))).
fate_channel() -> ?LET(X, binary(256 div 8), return(gmb_fate_data:make_channel(X))).
fate_values(Size, N, Options) ->
eqc_gen:list(N, fate_data(Size div max(1, N), Options)).
%% May shrink to fate_unit
fate_tuple(Size, Options) ->
?LET(N, choose(0, 6),
?LETSHRINK(Elements, fate_values(Size, N, Options),
return(gmb_fate_data:make_tuple(list_to_tuple(Elements))))).
fate_variant(Size, Options) ->
?LET({L1, L2, {tuple, Args}}, {list(choose(0, 255)), list(choose(0,255)), fate_tuple(Size, Options)},
return(gmb_fate_data:make_variant(L1 ++ [tuple_size(Args)] ++ L2,
length(L1), Args))).
fate_list(Size, Options) ->
?LET(N, frequency([{20, choose(0, 6)}, {1, choose(64 - 3, 64 + 3)}]),
?LETSHRINK(Vs, fate_values(Size, N, Options),
return(gmb_fate_data:make_list(Vs)))).
fate_map(Size, Options) ->
?LET(N, choose(0, 6),
?LETSHRINK(Values, fate_values(Size, N, Options),
?LET(Keys, vector(length(Values), fate_data(Size div max(1, N * 2), Options -- [map, store_map])),
return(gmb_fate_data:make_map(maps:from_list(lists:zip(Keys, Values))))))).
fate_store_map() ->
%% only #{} is allowed as cache in serialization
?LET(X, oneof([int(), largeint()]),
return(gmb_fate_data:make_store_map(abs(X)))).
fate_bad_map() ->
?LET(N, choose(0, 6),
?LET(Values, vector(N, ?SIZED(Size, resize(Size div 8, fate_data()))),
?LET(Keys, vector(N, ?SIZED(Size, resize(Size div 4, fate_data()))),
return(gmb_fate_data:make_map(maps:from_list(lists:zip(Keys, Values))))))).
non_quote_string() ->
?SUCHTHAT(S, utf8(), [ quote || <<34>> <= S ] == []).
char() ->
choose(1, 255).
injection(Binary) ->
?LET({N, Inj}, {choose(0, byte_size(Binary) - 1), choose(0,255)},
begin
M = N * 8,
<<X:M, _:8, Z/binary>> = Binary,
<<X:M, Inj:8, Z/binary>>
end).
is_empty(L) ->
?WHENFAIL(eqc:format("~p\n", [L]), L == []).
has_map(L) when is_list(L) ->
lists:any(fun(V) -> has_map(V) end, L);
has_map(T) when is_tuple(T) ->
has_map(tuple_to_list(T));
has_map(M) when is_map(M) ->
true;
has_map(?FATE_STORE_MAP(_, _)) ->
true;
has_map(_) ->
false.

View File

@ -1,56 +0,0 @@
%%% @author Thomas Arts
%%% @doc Use `rebar3 as eqc shell` to run properties in the shell
%%% Properties for testing Fate type representations
%%%
%%% @end
%%% Created : 13 Dec 2018 by Thomas Arts <thomas@SpaceGrey.lan>
-module(gmfate_type_eqc).
-include_lib("eqc/include/eqc.hrl").
-compile([export_all, nowarn_export_all]).
kind(X) when is_atom(X) -> X;
kind(T) when is_tuple(T) -> element(1, T).
prop_roundtrip() ->
?FORALL(FateType, fate_type(),
collect(kind(FateType),
begin
Serialized = gmb_fate_encoding:serialize_type(FateType),
BinSerialized = list_to_binary(Serialized),
?WHENFAIL(eqc:format("Serialized ~p to ~p (~p)~n", [FateType, Serialized, BinSerialized]),
begin
{Type, <<>>} = gmb_fate_encoding:deserialize_type(BinSerialized),
equals(Type, FateType)
end)
end)).
fate_type() ->
?SIZED(Size, fate_type(Size)).
fate_type(0) ->
oneof([integer,
boolean,
address,
{bytes, nat()},
contract,
oracle,
channel,
bits,
string]);
fate_type(Size) ->
?LAZY(
oneof([fate_type(0),
{list, fate_type(Size div 2)},
?LETSHRINK(Ts, fate_types(Size), {tuple, Ts}),
?LETSHRINK(Ts, fate_types(Size), {variant, Ts}),
?LETSHRINK([T1, T2], vector(2, fate_type(Size div 2)),
{map, T1, T2})])).
fate_types(Size) ->
?LET(N, choose(0, 6),
eqc_gen:list(N, fate_type(Size div max(2, N)))).

View File

@ -1,18 +1,16 @@
%% -*- mode: erlang; indent-tabs-mode: nil -*-
{minimum_otp_vsn, "20.1"}.
{erl_opts, [debug_info]}.
{deps, [ {eblake2, "1.0.0"}
, {gmserialization, {git, "https://git.qpq.swiss/QPQ-AG/gmserialization.git",
{ref, "9d2ecc00d32ea295309563e54a81636ecb597e96"}}}
, {aeserialization, {git, "https://github.com/aeternity/aeserialization.git",
{ref, "b55c372"}}}
, {getopt, "1.0.1"}
]}.
{escript_incl_apps, [gmbytecode, eblake2, gmserialization, getopt]}.
{escript_main_app, gmbytecode}.
{escript_name, gmfateasm}.
{escript_incl_apps, [aebytecode, eblake2, aeserialization, getopt]}.
{escript_main_app, aebytecode}.
{escript_name, aefateasm}.
{escript_emu_args, "%%!"}.
{pre_hooks,
@ -29,8 +27,8 @@
]}.
{relx, [{release, {gmbytecode, "3.4.1"},
[gmbytecode, eblake2, getopt]},
{relx, [{release, {aebytecode, "2.0.1"},
[aebytecode, eblake2, getopt]},
{dev_mode, true},
{include_erts, false},
@ -39,21 +37,21 @@
{profiles, [{binary, [
{deps, [ {eblake2, "1.0.0"}
, {gmserialization, {git, "https://git.qpq.swiss/QPQ-AG/gmserialization.git",
{ref, "9d2ecc00d32ea295309563e54a81636ecb597e96"}}}
, {aeserialization, {git, "https://github.com/aeternity/aeserialization.git",
{ref, "b55c372"}}}
, {getopt, "1.0.1"}
]},
{post_hooks, [{"(linux|darwin|solaris|freebsd|netbsd|openbsd)",
escriptize,
"cp \"$REBAR_BUILD_DIR/bin/gmfateasm\" ./gmfateasm"},
"cp \"$REBAR_BUILD_DIR/bin/aefateasm\" ./aefateasm"},
{"win32",
escriptize,
"robocopy \"%REBAR_BUILD_DIR%/bin/\" ./ gmfateasm* "
"robocopy \"%REBAR_BUILD_DIR%/bin/\" ./ aefateasm* "
"/njs /njh /nfl /ndl & exit /b 0"} % silence things
]}
]},
{eqc, [{erl_opts, [{parse_transform, eqc_cover}, {d, 'EQC'}]},
{eqc, [{erl_opts, [{parse_transform, eqc_cover}]},
{extra_src_dirs, ["quickcheck"]} %% May not be called eqc!
]}
]}.

View File

@ -1,23 +1,16 @@
{"1.2.0",
[{<<"gmserialization">>,
{git,"https://git.qpq.swiss/QPQ-AG/gmserialization.git",
{ref,"9d2ecc00d32ea295309563e54a81636ecb597e96"}},
{"1.1.0",
[{<<"aeserialization">>,
{git,"https://github.com/aeternity/aeserialization.git",
{ref,"b55c3726f4a21063721c68d6fa7fda39121edf11"}},
0},
{<<"base58">>,
{git,"https://git.qpq.swiss/QPQ-AG/erl-base58.git",
{ref,"e6aa62eeae3d4388311401f06e4b939bf4e94b9c"}},
{git,"https://github.com/aeternity/erl-base58.git",
{ref,"60a335668a60328a29f9731b67c4a0e9e3d50ab6"}},
1},
{<<"eblake2">>,{pkg,<<"eblake2">>,<<"1.0.0">>},0},
{<<"enacl">>,
{git,"https://git.qpq.swiss/QPQ-AG/enacl.git",
{ref,"4eb7ec70084ba7c87b1af8797c4c4e90c84f95a2"}},
1},
{<<"getopt">>,{pkg,<<"getopt">>,<<"1.0.1">>},0}]}.
[
{pkg_hash,[
{<<"eblake2">>, <<"EC8AD20E438AAB3F2E8D5D118C366A0754219195F8A0F536587440F8F9BCF2EF">>},
{<<"getopt">>, <<"C73A9FA687B217F2FF79F68A3B637711BB1936E712B521D8CE466B29CBF7808A">>}]},
{pkg_hash_ext,[
{<<"eblake2">>, <<"3C4D300A91845B25D501929A26AC2E6F7157480846FAB2347A4C11AE52E08A99">>},
{<<"getopt">>, <<"53E1AB83B9CEB65C9672D3E7A35B8092E9BDC9B3EE80721471A161C10C59959C">>}]}
{<<"getopt">>, <<"C73A9FA687B217F2FF79F68A3B637711BB1936E712B521D8CE466B29CBF7808A">>}]}
].

BIN
rebar3

Binary file not shown.

View File

@ -1,5 +1,4 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc Assembler for aevm machine code.
%%%
@ -26,19 +25,17 @@
%%% 4. labels as descibed above.
%%%
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 21 Dec 2017
%%%-------------------------------------------------------------------
-module(gmb_asm).
-vsn("3.4.1").
-module(aeb_asm).
-export([ file/2
, pp/1
, to_hexstring/1
]).
-include_lib("gmbytecode/include/gmb_opcodes.hrl").
-include_lib("aebytecode/include/aeb_opcodes.hrl").
pp(Asm) ->
@ -50,10 +47,10 @@ format(Asm) -> format(Asm, 0).
format([{comment, Comment} | Rest], Address) ->
";; " ++ Comment ++ "\n" ++ format(Rest, Address);
format([Mnemonic | Rest], Address) ->
Op = gmb_opcodes:m_to_op(Mnemonic),
Op = aeb_opcodes:m_to_op(Mnemonic),
case (Op >= ?PUSH1) andalso (Op =< ?PUSH32) of
true ->
Arity = gmb_opcodes:op_size(Op) - 1,
Arity = aeb_opcodes:op_size(Op) - 1,
{Args, Code} = get_args(Arity, Rest),
" " ++ atom_to_list(Mnemonic)
++ " " ++ Args ++ "\n"
@ -75,7 +72,7 @@ get_args(N, [Arg|Code]) ->
file(Filename, Options) ->
{ok, File} = file:read_file(Filename),
{ok, Tokens, _} = gmb_asm_scan:scan(binary_to_list(File)),
{ok, Tokens, _} = aeb_asm_scan:scan(binary_to_list(File)),
case proplists:lookup(pp_tokens, Options) of
{pp_tokens, true} ->
@ -103,8 +100,8 @@ to_hexstring(ByteList) ->
to_bytecode([{mnemonic,_line, Op}|Rest], Address, Env, Code, Opts) ->
OpCode = gmb_opcodes:m_to_op(Op),
OpSize = gmb_opcodes:op_size(OpCode),
OpCode = aeb_opcodes:m_to_op(Op),
OpSize = aeb_opcodes:op_size(OpCode),
to_bytecode(Rest, Address + OpSize, Env, [OpCode|Code], Opts);
to_bytecode([{int,_line, Int}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [Int|Code], Opts);
@ -141,7 +138,7 @@ resolve_refs([Op | Rest], Env, Code) ->
resolve_refs([],_Env, Code) -> Code.
expand_args([OP, Arg | Rest]) when OP >= ?PUSH1 andalso OP =< ?PUSH32 ->
BitSize = (gmb_opcodes:op_size(OP) - 1) * 8,
BitSize = (aeb_opcodes:op_size(OP) - 1) * 8,
Bin = << << X:BitSize>> || X <- [Arg] >>,
ArgByteList = binary_to_list(Bin),
[OP | ArgByteList] ++ expand_args(Rest);

View File

@ -1,6 +1,5 @@
%%% -*- erlang-indent-level:4; indent-tabs-mode: nil -*-
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc Assembler lexer.
%%%
@ -196,7 +195,7 @@ Erlang code.
-ignore_xref([format_error/1, string/2, token/2, token/3, tokens/2, tokens/3]).
-include_lib("gmbytecode/include/gmb_opcodes.hrl").
-include_lib("aebytecode/include/aeb_opcodes.hrl").
parse_hex("0x" ++ Chars) -> list_to_integer(Chars, 16).

View File

@ -1,22 +1,19 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Prettyprint aevm machine code
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 02 Oct 2017
%%% Created : 2 Oct 2017
%%%-------------------------------------------------------------------
-module(gmb_disassemble).
-vsn("3.4.1").
-module(aeb_disassemble).
-export([ pp/1,
format/2,
format_address/1
]).
-include_lib("gmbytecode/include/gmb_opcodes.hrl").
-include_lib("aebytecode/include/aeb_opcodes.hrl").
pp(Binary) ->
@ -29,37 +26,37 @@ format(Binary, ErrFormatFun) ->
pp(Address, [Op|Ops], Assembly, ErrFormatFun) ->
case Op of
X when (X >= ?STOP) andalso (X =< ?SIGNEXTEND) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?LT) andalso (X =< ?BYTE) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?SHA3) andalso (X =< ?SHA3) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?ADDRESS) andalso (X =< ?EXTCODECOPY) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?BLOCKHASH) andalso (X =< ?GASLIMIT) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?POP) andalso (X =< ?JUMPDEST) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?PUSH1) andalso (X =< ?PUSH32) ->
Bytes = X-?PUSH1+1,
{ArgList, NextOps} = lists:split(Bytes, Ops),
Arg = arglist_to_arg(ArgList),
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), [{Arg,8*Bytes}]),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), [{Arg,8*Bytes}]),
next(Address+Bytes, NextOps, Instr, Assembly, ErrFormatFun);
X when (X >= ?DUP1) andalso (X =< ?LOG4) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?CREATE) andalso (X =< ?DELEGATECALL) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
X when (X >= ?INVALID) andalso (X =< ?SUICIDE) ->
Instr = pp_instruction(Address, gmb_opcodes:mnemonic(Op), []),
Instr = pp_instruction(Address, aeb_opcodes:mnemonic(Op), []),
next(Address, Ops, Instr, Assembly, ErrFormatFun);
_ ->
ErrFormatFun("unhandled op ~p at ~p",[Op, Address]),

1049
src/aeb_fate_asm.erl Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,11 +1,10 @@
%%% -*- erlang-indent-level:4; indent-tabs-mode: nil -*-
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @copyright (C) 2019, aeternity Anstalt
%%% @doc
%%% Handling FATE code.
%%% @end
%%% ###REPLACEWITHNOTE###
###REPLACEWITHNOTE###
%%%-------------------------------------------------------------------
Definitions.
@ -14,13 +13,9 @@ HEXDIGIT = [0-9a-fA-F]
LOWER = [a-z_]
UPPER = [A-Z]
BASE58 = [123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]
BASE64 = [A-Za-z0-9+/=]
INT = {DIGIT}+
HEX = 0x{HEXDIGIT}+
OBJ_PFX = (ak|ct|ok|oq|ch|sg)
OBJECT = @{OBJ_PFX}_{BASE58}+
CODE = @cb_{BASE64}+
BYTES = #{BASE64}+
HASH = #{BASE58}+
WS = [\000-\s]
ID = {LOWER}[a-zA-Z0-9_]*
STRING = "[^"]*"
@ -29,21 +24,16 @@ BITS = (\!)?\<[\s01]*\>
Rules.
arg{INT} : {token, {arg, TokenLine, parse_arg(TokenChars)}}.
var{INT} : {token, {var, TokenLine, parse_var(TokenChars)}}.
a : {token, {stack, TokenLine}}.
a : {token, {stack, TokenLine, 0}}.
a{INT} : {token, {stack, TokenLine, parse_acc(TokenChars)}}.
true : {token, {boolean, TokenLine, true}}.
false : {token, {boolean, TokenLine, false}}.
%% ###REPLACEWITHOPTOKENS###
###REPLACEWITHOPTOKENS###
FUNCTION : {token, {function, TokenLine, 'FUNCTION' }}.
{BYTES} :
{token, {bytes, TokenLine, parse_hash(TokenChars)}}.
{CODE} :
{token, {contract_bytearray, TokenLine, parse_contract_bytearray(TokenChars)}}.
{OBJECT} :
{token, {object, TokenLine, parse_object(TokenChars)}}.
{ID} :
{token, {id, TokenLine, TokenChars}}.
{HEX} :
@ -52,11 +42,10 @@ FUNCTION : {token, {function, TokenLine, 'FUNCTION' }}.
{token, {int, TokenLine, parse_int(TokenChars)}}.
-{INT} :
{token, {int, TokenLine, parse_int(TokenChars)}}.
%% Due to the definition of STRING the tokens start and end with a quote ".
{HASH} :
{token, {address, TokenLine, parse_hash(TokenChars)}}.
{STRING} :
{token, {string, TokenLine, unicode:characters_to_binary(
lists:sublist(TokenChars, 2, length(TokenChars) - 2))}}.
{token, {string, TokenLine, list_to_binary(TokenChars)}}.
{BITS} :
{token, {bits, TokenLine, bits(TokenChars)}}.
@ -77,7 +66,6 @@ FUNCTION : {token, {function, TokenLine, 'FUNCTION' }}.
\{ : {token, {'{', TokenLine}}.
\} : {token, {'}', TokenLine}}.
\| : {token, {'|', TokenLine}}.
\' : {token, {typerep, TokenLine}}.
;;.* :
{token, {comment, TokenLine, drop_prefix($;, TokenChars)}}.
@ -101,7 +89,7 @@ Erlang code.
-ignore_xref([format_error/1, string/2, token/2, token/3, tokens/2, tokens/3]).
-include_lib("gmbytecode/include/gmb_fate_opcodes.hrl").
-include_lib("aebytecode/include/aeb_fate_opcodes.hrl").
parse_hex("0x" ++ Chars) -> list_to_integer(Chars, 16).
@ -110,25 +98,11 @@ parse_int(Chars) -> list_to_integer(Chars).
parse_arg("arg" ++ N) -> list_to_integer(N).
parse_var("var" ++ N) -> list_to_integer(N).
parse_acc("a" ++ N) -> list_to_integer(N).
parse_hash("#" ++ Chars) ->
base64:decode(Chars).
parse_contract_bytearray("@" ++ Chars) ->
case gmser_api_encoder:decode(unicode:characters_to_binary(Chars)) of
{contract_bytearray, Bin} -> Bin
end.
parse_object([_|Chars]) ->
case gmser_api_encoder:decode(unicode:characters_to_binary(Chars)) of
{account_pubkey, Bin} -> {address, Bin};
{contract_pubkey, Bin} -> {contract, Bin};
{oracle_pubkey, Bin} -> {oracle, Bin};
{oracle_query_id, Bin} -> {oracle_query, Bin};
{channel, Bin} -> {channel, Bin};
{signature, Bin} -> {signature, Bin}
end.
base58_to_address(Chars).
scan(S) ->
string(S).
@ -146,3 +120,23 @@ bits([$> |_Rest], Acc) -> Acc;
bits([$0 | Rest], Acc) -> bits(Rest, Acc bsl 1);
bits([$1 | Rest], Acc) -> bits(Rest, (Acc bsl 1) bor 1);
bits([$ | Rest], Acc) -> bits(Rest, Acc).
char_to_base58(C) ->
binary:at(<<0,1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,9,10,11,12,13,14,15,16,0,17,
18,19,20,21,0,22,23,24,25,26,27,28,29,30,31,32,0,0,0,0,0,0,
33,34,35,36,37,38,39,40,41,42,43,0,44,45,46,47,48,49,50,51,
52,53,54,55,56,57>>, C-$1).
base58_to_integer(C, []) -> C;
base58_to_integer(C, [X | Xs]) ->
base58_to_integer(C * 58 + char_to_base58(X), Xs).
base58_to_integer([]) -> error;
base58_to_integer([Char]) -> char_to_base58(Char);
base58_to_integer([Char | Str]) ->
base58_to_integer(char_to_base58(Char), Str).
base58_to_address(Base58) ->
I = base58_to_integer(Base58),
Bin = <<I:256>>,
Bin.

208
src/aeb_fate_data.erl Normal file
View File

@ -0,0 +1,208 @@
%% FATE data representation.
%%
-include("aeb_fate_data.hrl").
-module(aeb_fate_data).
-type fate_integer() :: ?FATE_INTEGER_T.
-type fate_boolean() :: ?FATE_BOOLEAN_T.
-type fate_nil() :: ?FATE_NIL_T.
-type fate_list() :: ?FATE_LIST_T.
-type fate_unit() :: ?FATE_UNIT_T.
-type fate_map() :: ?FATE_MAP_T.
-type fate_string() :: ?FATE_STRING_T.
-type fate_address() :: ?FATE_ADDRESS_T.
-type fate_variant() :: ?FATE_VARIANT_T.
-type fate_tuple() :: ?FATE_TUPLE_T.
-type fate_type_type() :: integer
| boolean
| {list, fate_type()}
| {map, fate_type(), fate_type()}
| {tuple, [fate_type()]}
| address
| bits
| {variant, integer()}.
-type fate_type() ::
fate_boolean()
| fate_integer()
| fate_nil()
| fate_list()
| fate_unit()
| fate_tuple()
| fate_string()
| fate_address()
| fate_variant()
| fate_map()
| fate_type_type().
-export_type([fate_type/0
, fate_boolean/0
, fate_integer/0
, fate_nil/0
, fate_list/0
, fate_unit/0
, fate_tuple/0
, fate_string/0
, fate_address/0
, fate_variant/0
, fate_map/0
, fate_type_type/0
]).
-export([ make_integer/1
, make_boolean/1
, make_list/1
, make_variant/3
, make_tuple/1
, make_string/1
, make_map/1
, make_address/1
, make_bits/1
, make_unit/0
, tuple_to_list/1
, decode/1
, encode/1
]).
-export([format/1]).
make_integer(I) when is_integer(I) -> ?MAKE_FATE_INTEGER(I).
make_boolean(true) -> ?FATE_TRUE;
make_boolean(false) -> ?FATE_FALSE.
make_list([]) -> ?FATE_NIL;
make_list(L) -> ?MAKE_FATE_LIST(L).
make_string(S) when is_list(S) ->
?FATE_STRING(list_to_binary(lists:flatten(S)));
make_string(S) when is_binary(S) -> ?FATE_STRING(S).
make_unit() -> ?FATE_UNIT.
make_tuple(T) -> ?FATE_TUPLE(T).
make_map(M) -> ?MAKE_FATE_MAP(M).
make_address(A) -> ?FATE_ADDRESS(A).
make_bits(I) when is_integer(I) -> ?FATE_BITS(I).
make_variant(Size, Tag, Values) when is_integer(Size), is_integer(Tag)
, 0 =< Size
, 0 =< Tag
, Tag < Size
, is_tuple(Values) ->
?FATE_VARIANT(Size, Tag, Values).
tuple_to_list(?FATE_TUPLE(T)) -> erlang:tuple_to_list(T).
%% Encode is a convinience function for testing, encoding an Erlang term
%% to a Fate term, but it can not distinguish between e.g. 32-byte strings
%% and addresses. Therfore an extra tuple layer on the erlang side for
%% addresses and bits.
encode({bits, Term}) when is_integer(Term) -> make_bits(Term);
%% TODO: check that each byte is in base58
encode({address, B}) when is_binary(B) -> make_address(B);
encode({address, I}) when is_integer(I) -> B = <<I:256>>, make_address(B);
encode({address, S}) when is_list(S) -> make_address(base58_to_address(S));
encode({variant, Size, Tag, Values}) -> make_variant(Size, Tag, Values);
encode(Term) when is_integer(Term) -> make_integer(Term);
encode(Term) when is_boolean(Term) -> make_boolean(Term);
encode(Term) when is_list(Term) -> make_list([encode(E) || E <- Term]);
encode(Term) when is_tuple(Term) ->
make_tuple(list_to_tuple([encode(E) || E <- erlang:tuple_to_list(Term)]));
encode(Term) when is_map(Term) ->
make_map(maps:from_list([{encode(K), encode(V)} || {K,V} <- maps:to_list(Term)]));
encode(Term) when is_binary(Term) -> make_string(Term).
decode(I) when ?IS_FATE_INTEGER(I) -> I;
decode(?FATE_TRUE) -> true;
decode(?FATE_FALSE) -> false;
decode(L) when ?IS_FATE_LIST(L) -> [decode(E) || E <- L];
decode(?FATE_ADDRESS(<<Address:256>>)) -> {address, Address};
decode(?FATE_BITS(Bits)) -> {bits, Bits};
decode(?FATE_TUPLE(T)) -> erlang:list_to_tuple([decode(E) || E <- T]);
decode(?FATE_VARIANT(Size, Tag, Values)) -> {variant, Size, Tag, Values};
decode(S) when ?IS_FATE_STRING(S) -> binary_to_list(S);
decode(M) when ?IS_FATE_MAP(M) ->
maps:from_list([{decode(K), decode(V)} || {K, V} <- maps:to_list(M)]).
-spec format(fate_type()) -> iolist().
format(I) when ?IS_FATE_INTEGER(I) -> integer_to_list(?MAKE_FATE_INTEGER(I));
format(?FATE_TRUE) -> "true";
format(?FATE_FALSE) -> "false";
format(?FATE_NIL) -> "[]";
format(L) when ?IS_FATE_LIST(L) -> format_list(?FATE_LIST_VALUE(L));
format(?FATE_UNIT) -> "()";
format(?FATE_TUPLE(T)) ->
["( ", lists:join(", ", [ format(E) || E <- erlang:tuple_to_list(T)]), " )"];
format(S) when ?IS_FATE_STRING(S) -> [S];
format(?FATE_BITS(B)) when B >= 0 ->
["<", format_bits(B, "") , ">"];
format(?FATE_BITS(B)) when B < 0 ->
["!< ", format_nbits(-B-1, "") , " >"];
format(?FATE_VARIANT(Size, Tag, T)) ->
["(| ",
lists:join("| ", [integer_to_list(Size), integer_to_list(Tag) |
[format(make_tuple(T))]]),
" |)"];
format(M) when ?IS_FATE_MAP(M) ->
["{ ", format_kvs(maps:to_list(?FATE_MAP_VALUE(M))), " }"];
format(?FATE_ADDRESS(Address)) -> ["#", address_to_base58(Address)];
format(V) -> exit({not_a_fate_type, V}).
format_bits(0, Acc) -> Acc;
format_bits(N, Acc) ->
Bit = $0 + (N band 1),
format_bits(N bsr 1, [Bit|Acc]).
format_nbits(0, Acc) -> Acc;
format_nbits(N, Acc) ->
Bit = $1 - (N band 1),
format_nbits(N bsr 1, [Bit|Acc]).
format_list(List) ->
["[ ", lists:join(", ", [format(E) || E <- List]), " ]"].
format_kvs(List) ->
lists:join(", ", [ [format(K), " => ", format(V)] || {K, V} <- List]).
%% -- Local base 58 library
base58char(Char) ->
binary:at(<<"123456789ABCDEFGHJKLMNPQRSTUVWXYZ"
"abcdefghijkmnopqrstuvwxyz">>, Char).
char_to_base58(C) ->
binary:at(<<0,1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,9,10,11,12,13,14,15,16,0,17,
18,19,20,21,0,22,23,24,25,26,27,28,29,30,31,32,0,0,0,0,0,0,
33,34,35,36,37,38,39,40,41,42,43,0,44,45,46,47,48,49,50,51,
52,53,54,55,56,57>>, C-$1).
base58_to_integer(C, []) -> C;
base58_to_integer(C, [X | Xs]) ->
base58_to_integer(C * 58 + char_to_base58(X), Xs).
base58_to_integer([]) -> error;
base58_to_integer([Char]) -> char_to_base58(Char);
base58_to_integer([Char | Str]) ->
base58_to_integer(char_to_base58(Char), Str).
base58_to_address(Base58) ->
I = base58_to_integer(Base58),
Bin = <<I:256>>,
Bin.
address_to_base58(<<A:256>>) ->
integer_to_base58(A).
integer_to_base58(0) -> <<"1">>;
integer_to_base58(Integer) ->
Base58String = integer_to_base58(Integer, []),
list_to_binary(Base58String).
integer_to_base58(0, Acc) -> Acc;
integer_to_base58(Integer, Acc) ->
Quot = Integer div 58,
Rem = Integer rem 58,
integer_to_base58(Quot, [base58char(Rem)|Acc]).

260
src/aeb_fate_encoding.erl Normal file
View File

@ -0,0 +1,260 @@
%% Fate data (and instruction) serialization.
%%
%% The FATE serialization has to fullfill the following properties:
%% * There has to be 1 and only 1 byte sequence
%% representing each unique value in FATE.
%% * A valid byte sequence has to be deserializable to a FATE value.
%% * A valid byte sequence must not contain any trailing bytes.
%% * A serialization is a sequence of 8-bit bytes.
%%
%% The serialization function should fullfill the following:
%% * A valid FATE value should be serialized to a byte sequence.
%% * Any other argument, not representing a valid FATE value should
%% throw an exception
%%
%% The deserialization function should fullfill the following:
%% * A valid byte sequence should be deserialized to a valid FATE value.
%% * Any other argument, not representing a valid byte sequence should
%% throw an exception
%%
%% History
%% * First draft of FATE serialization encoding/decoding.
%% Initial experiment with tags
%% * Second draft
%% * FATE data is now defined in aefa_data.erl
%% * Third draft
%% * Added Bit strings
%%
%% TODO:
%% * Make the code production ready.
%% (add tests, document exported functions).
%% * Handle Variant types better.
%% * Handle type representations.
%% * Handle instructions.
%%
%% ------------------------------------------------------------------------
-module(aeb_fate_encoding).
-export([ deserialize/1
, deserialize_one/1
, serialize/1
]).
-include("aeb_fate_data.hrl").
%% Definition of tag scheme.
%% This has to follow the protocol specification.
-define(SMALL_INT , 2#0). %% sxxxxxx 0 - 6 bit integer with sign bit
%% 1 Set below
-define(LONG_STRING , 2#00000001). %% 000000 01 - RLP encoded array, size >= 64
-define(SHORT_STRING , 2#01). %% xxxxxx 01 - [bytes], 0 < xxxxxx:size < 64
%% 11 Set below
-define(SHORT_LIST , 2#0011). %% xxxx 0011 - [encoded elements], 0 < length < 16
%% xxxx 0111 - FREE (For typedefs in future)
-define(LONG_TUPLE , 2#00001011). %% 0000 1011 - RLP encoded (size - 16) + [encoded elements],
-define(SHORT_TUPLE , 2#1011). %% xxxx 1011 - [encoded elements], 0 < size < 16
%% 1111 Set below
-define(LONG_LIST , 2#00011111). %% 0001 1111 - RLP encoded (length - 16) + [Elements]
-define(MAP , 2#00101111). %% 0010 1111 - RLP encoded size + [encoded key, encoded value]
-define(EMPTY_TUPLE , 2#00111111). %% 0011 1111
-define(POS_BITS , 2#01001111). %% 0100 1111 - RLP encoded integer (to be interpreted as bitfield)
-define(EMPTY_STRING , 2#01011111). %% 0101 1111
-define(POS_BIG_INT , 2#01101111). %% 0110 1111 - RLP encoded (integer - 64)
-define(FALSE , 2#01111111). %% 0111 1111
%% %% 1000 1111 - FREE (Possibly for bytecode in the future.)
-define(ADDRESS , 2#10011111). %% 1001 1111 - [32 bytes]
-define(VARIANT , 2#10101111). %% 1010 1111 - encoded size + encoded tag + encoded values
-define(NIL , 2#10111111). %% 1011 1111 - Empty list
-define(NEG_BITS , 2#11001111). %% 1100 1111 - RLP encoded integer (infinite 1:s bitfield)
-define(EMPTY_MAP , 2#11011111). %% 1101 1111
-define(NEG_BIG_INT , 2#11101111). %% 1110 1111 - RLP encoded (integer - 64)
-define(TRUE , 2#11111111). %% 1111 1111
-define(SHORT_TUPLE_SIZE, 16).
-define(SHORT_LIST_SIZE , 16).
-define(SMALL_INT_SIZE , 64).
-define(SHORT_STRING_SIZE, 64).
-define(POS_SIGN, 0).
-define(NEG_SIGN, 1).
%% --------------------------------------------------
%% Serialize
%% Serialized a Fate data value into a sequence of bytes
%% according to the Fate serialization specification.
%% TODO: The type Fate Data is not final yet.
-spec serialize(aeb_fate_data:fate_type()) -> binary().
serialize(?FATE_TRUE) -> <<?TRUE>>;
serialize(?FATE_FALSE) -> <<?FALSE>>;
serialize(?FATE_NIL) -> <<?NIL>>; %% ! Untyped
serialize(?FATE_UNIT) -> <<?EMPTY_TUPLE>>; %% ! Untyped
serialize(M) when ?IS_FATE_MAP(M), ?FATE_MAP_SIZE(M) =:= 0 -> <<?EMPTY_MAP>>; %% ! Untyped
serialize(?FATE_EMPTY_STRING) -> <<?EMPTY_STRING>>;
serialize(I) when ?IS_FATE_INTEGER(I) -> serialize_integer(I);
serialize(?FATE_BITS(Bits)) when is_integer(Bits) -> serialize_bits(Bits);
serialize(String) when ?IS_FATE_STRING(String),
?FATE_STRING_SIZE(String) > 0,
?FATE_STRING_SIZE(String) < ?SHORT_STRING_SIZE ->
Size = ?FATE_STRING_SIZE(String),
Bytes = ?FATE_STRING_VALUE(String),
<<Size:6, ?SHORT_STRING:2, Bytes/binary>>;
serialize(String) when ?IS_FATE_STRING(String),
?FATE_STRING_SIZE(String) > 0,
?FATE_STRING_SIZE(String) >= ?SHORT_STRING_SIZE ->
Bytes = ?FATE_STRING_VALUE(String),
<<?LONG_STRING, (aeser_rlp:encode(Bytes))/binary>>;
serialize(?FATE_ADDRESS(Address)) when is_binary(Address) ->
<<?ADDRESS, (aeser_rlp:encode(Address))/binary>>;
serialize(?FATE_TUPLE(T)) when size(T) > 0 ->
S = size(T),
L = tuple_to_list(T),
Rest = << <<(serialize(E))/binary>> || E <- L >>,
if S < ?SHORT_TUPLE_SIZE ->
<<S:4, ?SHORT_TUPLE:4, Rest/binary>>;
true ->
Size = rlp_integer(S - ?SHORT_TUPLE_SIZE),
<<?LONG_TUPLE:8, Size/binary, Rest/binary>>
end;
serialize(L) when ?IS_FATE_LIST(L) ->
[_E|_] = List = ?FATE_LIST_VALUE(L),
S = length(List),
Rest = << <<(serialize(El))/binary>> || El <- List >>,
if S < ?SHORT_LIST_SIZE ->
<<S:4, ?SHORT_LIST:4, Rest/binary>>;
true ->
Val = rlp_integer(S - ?SHORT_LIST_SIZE),
<<?LONG_LIST, Val/binary, Rest/binary>>
end;
serialize(Map) when ?IS_FATE_MAP(Map) ->
L = [{_K,_V}|_] = lists:sort(maps:to_list(?FATE_MAP_VALUE(Map))),
Size = length(L),
%% TODO: check all K same type, and all V same type
%% check K =/= map
Elements = << <<(serialize(K1))/binary, (serialize(V1))/binary>> || {K1,V1} <- L >>,
<<?MAP,
(rlp_integer(Size))/binary,
(Elements)/binary>>;
serialize(?FATE_VARIANT(Size, Tag, Values)) when 0 < Size, Size < 256,
0 =< Tag, Tag < Size ->
<<?VARIANT, Size:8, Tag:8,
(serialize(?FATE_TUPLE(Values)))/binary
>>.
%% -----------------------------------------------------
rlp_integer(S) when S >= 0 ->
aeser_rlp:encode(binary:encode_unsigned(S)).
serialize_integer(I) when ?IS_FATE_INTEGER(I) ->
V = ?FATE_INTEGER_VALUE(I),
Abs = abs(V),
Sign = case V < 0 of
true -> ?NEG_SIGN;
false -> ?POS_SIGN
end,
if Abs < ?SMALL_INT_SIZE -> <<Sign:1, Abs:6, ?SMALL_INT:1>>;
Sign =:= ?NEG_SIGN -> <<?NEG_BIG_INT,
(rlp_integer(Abs - ?SMALL_INT_SIZE))/binary>>;
Sign =:= ?POS_SIGN -> <<?POS_BIG_INT,
(rlp_integer(Abs - ?SMALL_INT_SIZE))/binary>>
end.
serialize_bits(B) when is_integer(B) ->
Abs = abs(B),
Sign = case B < 0 of
true -> ?NEG_SIGN;
false -> ?POS_SIGN
end,
if
Sign =:= ?NEG_SIGN -> <<?NEG_BITS, (rlp_integer(Abs))/binary>>;
Sign =:= ?POS_SIGN -> <<?POS_BITS, (rlp_integer(Abs))/binary>>
end.
-spec deserialize(binary()) -> aeb_fate_data:fate_type().
deserialize(B) ->
{T, <<>>} = deserialize2(B),
T.
deserialize_one(B) -> deserialize2(B).
deserialize2(<<?POS_SIGN:1, I:6, ?SMALL_INT:1, Rest/binary>>) ->
{?MAKE_FATE_INTEGER(I), Rest};
deserialize2(<<?NEG_SIGN:1, I:6, ?SMALL_INT:1, Rest/binary>>) ->
{?MAKE_FATE_INTEGER(-I), Rest};
deserialize2(<<?NEG_BIG_INT, Rest/binary>>) ->
{Bint, Rest2} = aeser_rlp:decode_one(Rest),
{?MAKE_FATE_INTEGER(-binary:decode_unsigned(Bint) - ?SMALL_INT_SIZE),
Rest2};
deserialize2(<<?POS_BIG_INT, Rest/binary>>) ->
{Bint, Rest2} = aeser_rlp:decode_one(Rest),
{?MAKE_FATE_INTEGER(binary:decode_unsigned(Bint) + ?SMALL_INT_SIZE),
Rest2};
deserialize2(<<?NEG_BITS, Rest/binary>>) ->
{Bint, Rest2} = aeser_rlp:decode_one(Rest),
{?FATE_BITS(-binary:decode_unsigned(Bint)), Rest2};
deserialize2(<<?POS_BITS, Rest/binary>>) ->
{Bint, Rest2} = aeser_rlp:decode_one(Rest),
{?FATE_BITS(binary:decode_unsigned(Bint)), Rest2};
deserialize2(<<?LONG_STRING, Rest/binary>>) ->
{String, Rest2} = aeser_rlp:decode_one(Rest),
{?MAKE_FATE_STRING(String), Rest2};
deserialize2(<<S:6, ?SHORT_STRING:2, Rest/binary>>) ->
String = binary:part(Rest, 0, S),
Rest2 = binary:part(Rest, byte_size(Rest), - (byte_size(Rest) - S)),
{?MAKE_FATE_STRING(String), Rest2};
deserialize2(<<?ADDRESS, Rest/binary>>) ->
{A, Rest2} = aeser_rlp:decode_one(Rest),
{?FATE_ADDRESS(A), Rest2};
deserialize2(<<?TRUE, Rest/binary>>) ->
{?FATE_TRUE, Rest};
deserialize2(<<?FALSE, Rest/binary>>) ->
{?FATE_FALSE, Rest};
deserialize2(<<?NIL, Rest/binary>>) ->
{?FATE_NIL, Rest};
deserialize2(<<?EMPTY_TUPLE, Rest/binary>>) ->
{?FATE_UNIT, Rest};
deserialize2(<<?EMPTY_MAP, Rest/binary>>) ->
{?MAKE_FATE_MAP(#{}), Rest};
deserialize2(<<?EMPTY_STRING, Rest/binary>>) ->
{?FATE_EMPTY_STRING, Rest};
deserialize2(<<?LONG_TUPLE, Rest/binary>>) ->
{BSize, Rest1} = aeser_rlp:decode_one(Rest),
N = binary:decode_unsigned(BSize) + ?SHORT_TUPLE_SIZE,
{List, Rest2} = deserialize_elements(N, Rest1),
{?FATE_TUPLE(list_to_tuple(List)), Rest2};
deserialize2(<<S:4, ?SHORT_TUPLE:4, Rest/binary>>) ->
{List, Rest1} = deserialize_elements(S, Rest),
{?FATE_TUPLE(list_to_tuple(List)), Rest1};
deserialize2(<<?LONG_LIST, Rest/binary>>) ->
{BLength, Rest1} = aeser_rlp:decode_one(Rest),
Length = binary:decode_unsigned(BLength) + ?SHORT_LIST_SIZE,
{List, Rest2} = deserialize_elements(Length, Rest1),
{?MAKE_FATE_LIST(List), Rest2};
deserialize2(<<S:4, ?SHORT_LIST:4, Rest/binary>>) ->
{List, Rest1} = deserialize_elements(S, Rest),
{?MAKE_FATE_LIST(List), Rest1};
deserialize2(<<?MAP, Rest/binary>>) ->
{BSize, Rest1} = aeser_rlp:decode_one(Rest),
Size = binary:decode_unsigned(BSize),
{List, Rest2} = deserialize_elements(2*Size, Rest1),
Map = insert_kv(List, #{}),
{?MAKE_FATE_MAP(Map), Rest2};
deserialize2(<<?VARIANT, Size:8, Tag:8, Rest/binary>>) ->
if Tag > Size -> exit({too_large_tag_in_variant, Tag, Size});
true ->
{?FATE_TUPLE(T), Rest2} = deserialize2(Rest),
{?FATE_VARIANT(Size, Tag, T), Rest2}
end.
insert_kv([], M) -> M;
insert_kv([K,V|R], M) -> insert_kv(R, maps:put(K, V, M)).
deserialize_elements(0, Rest) ->
{[], Rest};
deserialize_elements(N, Es) ->
{E, Rest} = deserialize2(Es),
{Tail, Rest2} = deserialize_elements(N-1, Rest),
{[E|Tail], Rest2}.

View File

@ -0,0 +1,687 @@
-module(aeb_fate_generate_ops).
-export([ gen_and_halt/1
, generate/0
, generate_documentation/1
, test_asm_generator/1]).
gen_and_halt([SrcDirArg, IncludeDirArg]) ->
generate(atom_to_list(SrcDirArg),
atom_to_list(IncludeDirArg)),
halt().
generate() ->
generate("src/", "include/").
generate(Src, Include) ->
Ops = gen(ops_defs()),
%% io:format("ops: ~p\n", [Ops]),
HrlFile = Include ++ "aeb_fate_opcodes.hrl",
generate_header_file(HrlFile, Ops),
generate_opcodes_ops(aeb_fate_opcodes, HrlFile, Src, Ops),
generate_code_ops(aeb_fate_code, Src, Ops),
generate_scanner("aeb_fate_asm_scan.template", "aeb_fate_asm_scan.xrl", Src, Ops),
gen_asm_pp(aeb_fate_pp, Src, Ops).
%% TODO: Some real gas numbers...
ops_defs() ->
%% Opname, Opcode, args, end_bb, gas, format, Constructor, Documentation
[ { 'RETURN', 16#00, 0, true, 2, atomic, return, "Return from function call pop stack to arg0. The type of the retun value has to match the return type of the function."}
, { 'RETURNR', 16#01, 1, true, 2, [a], returnr, "Return from function call copy Arg0 to arg0. The type of the retun value has to match the return type of the function."}
, { 'CALL', 16#02, 1, true, 4, [is], call, "Call given function with args on stack. The types of the arguments has to match the argument typs of the function."}
, { 'CALL_R', 16#03, 2, true, 8, [a,is], call_r, "Remote call to given contract and function. The types of the arguments has to match the argument typs of the function."}
, { 'CALL_T', 16#04, 1, true, 4, [is], call_t, "Tail call to given function. The types of the arguments has to match the argument typs of the function. And the return type of the called function has to match the type of the current function."}
, { 'CALL_TR', 16#05, 2, true, 8, [a,is], call_tr, "Remote tail call to given contract and function. The types of the arguments has to match the argument typs of the function. And the return type of the called function has to match the type of the current function."}
, { 'JUMP', 16#06, 1, true, 3, [ii], jump, "Jump to a basic block. The basic block has to exist in the current function."}
, { 'JUMPIF', 16#07, 2, true, 4, [a,ii], jumpif, "Conditional jump to a basic block. If Arg0 then jump to Arg1."}
, { 'SWITCH_V2', 16#08, 3, true, 4, [a,ii,ii], switch, "Conditional jump to a basic block on variant tag."}
, { 'SWITCH_V3', 16#09, 4, true, 4, [a,ii,ii,ii], switch, "Conditional jump to a basic block on variant tag."}
, { 'SWITCH_VN', 16#0a, 2, true, 4, [a, li], switch, "Conditional jump to a basic block on variant tag."}
, { 'PUSH', 16#0b, 1, false, 2, [a], push, "Push argument to stack."}
, { 'DUPA', 16#0c, 0, false, 3, atomic, dup, "push copy of accumulator on stack."}
, { 'DUP', 16#0d, 1, false, 3, [a], dup, "push Arg0 stack pos on top of stack."}
, { 'POP', 16#0e, 1, false, 3, [a], pop, "Arg0 := top of stack."}
, { 'STORE', 16#0f, 2, false, 3, [a,a], store, "Arg0 := Arg1."}
, { 'INCA', 16#10, 0, false, 2, atomic, inc, "Increment accumulator."}
, { 'INC', 16#11, 1, false, 2, [a], inc, "Increment argument."}
, { 'DECA', 16#12, 0, false, 2, atomic, dec, "Decrement accumulator."}
, { 'DEC', 16#13, 1, false, 2, [a], dec, "Decrement argument."}
, { 'ADD', 16#14, 3, false, 3, [a,a,a], add, "Arg0 := Arg1 + Arg2."}
, { 'SUB', 16#15, 3, false, 3, [a,a,a], sub, "Arg0 := Arg1 - Arg2."}
, { 'MUL', 16#16, 3, false, 3, [a,a,a], mul, "Arg0 := Arg1 * Arg2."}
, { 'DIV', 16#17, 3, false, 3, [a,a,a], divide, "Arg0 := Arg1 / Arg2."}
, { 'MOD', 16#18, 3, false, 3, [a,a,a], modulo, "Arg0 := Arg1 mod Arg2."}
, { 'POW', 16#19, 3, false, 3, [a,a,a], pow, "Arg0 := Arg1 ^ Arg2."}
, { 'LT', 16#20, 3, false, 3, [a,a,a], lt, "Arg0 := Arg1 < Arg2."}
, { 'GT', 16#21, 3, false, 3, [a,a,a], gt, "Arg0 := Arg1 > Arg2."}
, { 'EQ', 16#22, 3, false, 3, [a,a,a], eq, "Arg0 := Arg1 = Arg2."}
, { 'ELT', 16#23, 3, false, 3, [a,a,a], elt, "Arg0 := Arg1 =< Arg2."}
, { 'EGT', 16#24, 3, false, 3, [a,a,a], egt, "Arg0 := Arg1 >= Arg2."}
, { 'NEQ', 16#25, 3, false, 3, [a,a,a], neq, "Arg0 := Arg1 /= Arg2."}
, { 'AND', 16#26, 3, false, 3, [a,a,a], and_op, "Arg0 := Arg1 and Arg2."}
, { 'OR', 16#27, 3, false, 3, [a,a,a], or_op, "Arg0 := Arg1 or Arg2."}
, { 'NOT', 16#28, 2, false, 3, [a,a], not_op, "Arg0 := not Arg1."}
, { 'TUPLE', 16#29, 1, false, 3, [ii], tuple, "Create a tuple of size = Arg0. Elements on stack."}
, { 'ELEMENT', 16#2a, 4, false, 3, [t,a,a,a], element_op, "Arg1 := element(Arg2, Arg3). The element should be of type Arg1"}
, { 'MAP_EMPTY', 16#2b, 1, false, 3, [a], map_empty, "Arg0 := #{}."}
, { 'MAP_LOOKUP', 16#2c, 3, false, 3, [a,a,a], map_lookup, "Arg0 := lookup key Arg2 in map Arg1."}
, { 'MAP_LOOKUPD', 16#2d, 4, false, 3, [a,a,a,a], map_lookup, "Arg0 := lookup key Arg2 in map Arg1 if key exists in map otherwise Arg0 := Arg3."}
, { 'MAP_UPDATE', 16#2e, 4, false, 3, [a,a,a,a], map_update, "Arg0 := update key Arg2 in map Arg1 with value Arg3."}
, { 'MAP_DELETE', 16#2f, 3, false, 3, [a,a,a], map_delete, "Arg0 := delete key Arg2 from map Arg1."}
, { 'MAP_MEMBER', 16#30, 3, false, 3, [a,a,a], map_member, "Arg0 := true if key Arg2 is in map Arg1."}
, { 'MAP_FROM_LIST',16#31, 2, false, 3, [a,a], map_from_list, "Arg0 := make a map from (key, value) list in Arg1."}
, { 'NIL', 16#32, 1, false, 3, [a], nil, "Arg0 := []."}
, { 'IS_NIL', 16#33, 2, false, 3, [a,a], is_nil, "Arg0 := true if Arg1 == []."}
, { 'CONS', 16#34, 3, false, 3, [a,a,a], cons, "Arg0 := [Arg1|Arg2]."}
, { 'HD', 16#35, 2, false, 3, [a,a], hd, "Arg0 := head of list Arg1."}
, { 'TL', 16#36, 2, false, 3, [a,a], tl, "Arg0 := tail of list Arg1."}
, { 'LENGTH', 16#37, 2, false, 3, [a,a], length, "Arg0 := length of list Arg1."}
, { 'STR_EQ', 16#38, 3, false, 3, [a,a,a], str_eq, "Arg0 := true iff the strings Arg1 and Arg2 are the same."}
, { 'STR_JOIN', 16#39, 3, false, 3, [a,a,a], str_join, "Arg0 := string Arg1 followed by string Arg2."}
, { 'INT_TO_STR', 16#40, 2, false, 3, [a,a], int_to_str, "Arg0 := turn integer Arg1 into a string."}
, { 'ADDR_TO_STR', 16#41, 2, false, 3, [a,a], addr_to_str, "Arg0 := turn address Arg1 into a string."}
, { 'STR_REVERSE', 16#42, 2, false, 3, [a,a], str_reverse, "Arg0 := the reverse of string Arg1."}
, { 'INT_TO_ADDR', 16#43, 2, false, 3, [a,a], int_to_addr, "Arg0 := turn integer Arg1 into an address."}
, { 'VARIANT', 16#44, 4, false, 3, [a,a,a,a], variant, "Arg0 := create a variant of size Arg1 with the tag Arg2 (Arg2 < Arg1) and take Arg3 elements from the stack."}
, { 'VARIANT_TEST', 16#45, 3, false, 3, [a,a,a], variant_test, "Arg0 := true if variant Arg1 has the tag Arg2."}
, { 'VARIANT_ELEMENT',16#46, 3, false, 3, [a,a,a], variant_element, "Arg0 := element number Arg2 from variant Arg1."}
, { 'BITS_NONEA', 16#47, 0, false, 3, atomic, bits_none, "accumulator := empty bitmap."}
, { 'BITS_NONE', 16#48, 1, false, 3, [a], bits_none, "Arg0 := empty bitmap."}
, { 'BITS_ALLA', 16#49, 0, false, 3, atomic, bits_all, "accumulator := full bitmap."}
, { 'BITS_ALL', 16#50, 1, false, 3, [a], bits_all, "Arg0 := full bitmap."}
, { 'BITS_ALL_N', 16#51, 2, false, 3, [a,a], bits_all_n, "Arg0 := bitmap with Arg1 bits set."}
, { 'BITS_SET', 16#52, 3, false, 3, [a,a,a], bits_set, "Arg0 := set bit Arg2 of bitmap Arg1."}
, { 'BITS_CLEAR', 16#53, 3, false, 3, [a,a,a], bits_clear, "Arg0 := clear bit Arg2 of bitmap Arg1."}
, { 'BITS_TEST', 16#54, 3, false, 3, [a,a,a], bits_test, "Arg0 := true if bit Arg2 of bitmap Arg1 is set."}
, { 'BITS_SUM', 16#55, 2, false, 3, [a,a], bits_sum, "Arg0 := sum of set bits in bitmap Arg1. Exception if infinit bitmap."}
, { 'BITS_OR', 16#56, 3, false, 3, [a,a,a], bits_or, "Arg0 := Arg1 v Arg2."}
, { 'BITS_AND', 16#57, 3, false, 3, [a,a,a], bits_and, "Arg0 := Arg1 ^ Arg2."}
, { 'BITS_DIFF', 16#58, 3, false, 3, [a,a,a], bits_diff, "Arg0 := Arg1 - Arg2."}
, { 'ADDRESS', 16#59, 1, false, 3, [a], address, "Arg0 := The current contract address."}
, { 'BALANCE', 16#5a, 1, false, 3, [a], balance, "Arg0 := The current contract address."}
, { 'ORIGIN', 16#5b, 1, false, 3, [a], origin, "Arg0 := Address of contract called by the call transaction."}
, { 'CALLER', 16#5c, 1, false, 3, [a], caller, "Arg0 := The address that signed the call transaction."}
, { 'GASPRICE', 16#5d, 1, false, 3, [a], gasprice, "Arg0 := The current gas price."}
, { 'BLOCKHASH', 16#5e, 1, false, 3, [a], blockhash, "Arg0 := The current blockhash."} %% TODO: Do we support has at height?
, { 'BENEFICIARY', 16#5f, 1, false, 3, [a], beneficiary, "Arg0 := The address of the current beneficiary."}
, { 'TIMESTAMP', 16#60, 1, false, 3, [a], timestamp, "Arg0 := The current timestamp. Unrelaiable, don't use for anything."}
, { 'GENERATION', 16#61, 1, false, 3, [a], generation, "Arg0 := The block height of the cureent generation."}
, { 'MICROBLOCK', 16#62, 1, false, 3, [a], microblock, "Arg0 := The current micro block number."}
, { 'DIFFICULTY', 16#63, 1, false, 3, [a], difficulty, "Arg0 := The current difficulty."}
, { 'GASLIMIT', 16#64, 1, false, 3, [a], gaslimit, "Arg0 := The current gaslimit."}
, { 'GAS', 16#65, 1, false, 3, [a], gas, "Arg0 := The amount of gas left."}
, { 'LOG0', 16#66, 2, false, 3, [a,a], log, "Create a log message in the call object."}
, { 'LOG1', 16#67, 3, false, 3, [a,a,a], log, "Create a log message with one topic in the call object."}
, { 'LOG2', 16#68, 4, false, 3, [a,a,a,a], log, "Create a log message with two topics in the call object."}
, { 'LOG3', 16#69, 5, false, 3, [a,a,a,a,a], log, "Create a log message with three topics in the call object."}
, { 'LOG4', 16#6a, 6, false, 3, [a,a,a,a,a,a], log, "Create a log message with four topics in the call object."}
, { 'DEACTIVATE', 16#6b, 0, false, 3, atomic, deactivate, "Mark the current contract for deactication."}
%% Transaction ops
, { 'SPEND', 16#6c, 2, false,3, [a,a], spend, "Transfer Arg0 tokens to account Arg1. (If the contract account has at least that many tokens."}
, { 'ORACLE_REGISTER', 16#6d, 6, false,3, [a,a,a,a,a,a], oracle_register, "Mark the current contract for deactication."}
%% TODO:
, { 'ORACLE_QUERY', 16#6e, 0, false,3, atomic, oracle_query, ""}
, { 'ORACLE_RESPOND', 16#6f, 0, false,3, atomic, oracle_respond, ""}
, { 'ORACLE_EXTEND', 16#70, 0, false,3, atomic, oracle_extend, ""}
, { 'ORACLE_GET_ANSWER', 16#71, 0, false,3, atomic, oracle_get_answer, ""}
, { 'ORACLE_GET_QUESTION', 16#72, 0, false,3, atomic,oracle_get_question, ""}
, { 'ORACLE_QUERY_FEE', 16#73, 0, false,3, atomic, oracle_query_fee, ""}
, { 'AENS_RESOLVE', 16#74, 0, false,3, atomic, aens_resolve, ""}
, { 'AENS_PRECLAIM', 16#75, 0, false,3, atomic, aens_preclaim, ""}
, { 'AENS_CLAIM', 16#76, 0, false,3, atomic, aens_claim, ""}
, { 'AENS_UPDATE', 16#77, 0, false,3, atomic, aend_update, ""}
, { 'AENS_TRANSFER', 16#78, 0, false,3, atomic, aens_transfer, ""}
, { 'AENS_REVOKE', 16#79, 0, false,3, atomic, aens_revoke, ""}
, { 'ECVERIFY', 16#7a, 0, false,3, atomic, ecverify, ""}
, { 'SHA3', 16#7b, 0, false,3, atomic, sha3, ""}
, { 'SHA256', 16#7c, 0, false,3, atomic, sha256, ""}
, { 'BLAKE2B', 16#7d, 0, false,3, atomic, blake2b, ""}
, { 'DUMMY7ARG', 16#f9, 7, false,3, [a,a,a,a,a,a,a], dummyarg, "Temporary dummy instruction to test 7 args."}
, { 'DUMMY8ARG', 16#fa, 8, false,3, [a,a,a,a,a,a,a,a],dummyarg, "Temporary dummy instruction to test 8 args."}
, { 'ABORT', 16#fb, 1, false, 3, [a], abort, "Abort execution (dont use all gas) with error message in Arg0."}
, { 'EXIT', 16#fc, 1, false, 3, [a], exit, "Abort execution (use upp all gas) with error message in Arg0."}
, { 'NOP', 16#fd, 0, false, 1, atomic, nop, "The no op. does nothing."}
%% FUNCTION 16#fe "Function declaration and entrypoint."
%% EXTEND 16#ff "Reserved for future extensions beyond one byte opcodes."
].
generate_header_file(Filename, Ops) ->
{ok, File} = file:open(Filename, [write]),
Defines = lists:flatten([gen_defines(Op) || Op <- Ops]),
io:format(File, "~s", [prelude("Provides opcode defines.\n")]),
io:format(File, "%% FATE opcodes\n~s", [Defines]),
io:format(File, "~s",
["-define('FUNCTION' , 16#fe).\n"
"-define('EXTEND' , 16#ff).\n\n"]),
file:close(File).
generate_opcodes_ops(Modulename, HrlFile, SrcDir, Ops) ->
Filename = SrcDir ++ atom_to_list(Modulename) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Mnemonic = lists:flatten([gen_mnemonic(Op) || Op <- Ops]),
ToOp = lists:flatten([gen_m_to_op(Op) || Op <- Ops]),
Args = lists:flatten([gen_args(Op) || Op <- Ops]),
EndBB = lists:flatten([gen_bb(Op) || Op <- Ops]),
io:format(File, "~s", [prelude("Provides opcode primitives.\n")]),
io:format(File, "~s", [ops_exports(Modulename, HrlFile,
["args/1\n"
" , end_bb/1\n"
" , mnemonic/1\n"
" , m_to_op/1\n"
])]),
io:format(File, "%% FATE mnemonics\n~s", [Mnemonic]),
io:format(File, "mnemonic(Op) -> exit({bad_opcode, Op}).\n\n", []),
io:format(File, "%% FATE opcodes\n~s", [ToOp]),
io:format(File, "m_to_op(M) -> exit({bad_mnemonic, M}).\n\n", []),
io:format(File, "%% FATE numbers of args to op.\n~s", [Args]),
io:format(File, "args(Op) -> exit({bad_opcode, Op}).\n\n", []),
io:format(File, "%% Does FATE Op end a Basic Block?\n~s", [EndBB]),
io:format(File, "end_bb(_) -> false.\n\n", []),
file:close(File).
generate_code_ops(Modulename, SrcDir, Ops) ->
Filename = SrcDir ++ atom_to_list(Modulename) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Types = lists:flatten([gen_type(Op) || Op <- Ops]),
TypeExports = lists:flatten([gen_type_exports(Op) || Op <- Ops]),
[#{type_name := FirstType} | RestOfOps] = Ops,
FateTypes = lists:flatten([gen_fate_code_type(Op) || Op <- RestOfOps]),
ConstructorExports = lists:flatten([gen_constructor_exports(Op) || Op <- Ops]),
Constructors = lists:flatten([gen_constructors(Op) || Op <- Ops]),
io:format(File, "~s", [prelude(" Provide constructor functuions for "
"Fate instructions.\n%%% Provide types"
" and documentation for Fate "
"instructions.\n")]),
io:format(File, "-module(~w).\n\n", [Modulename]),
io:format(File, "-include_lib(\"aebytecode/include/aeb_fate_data.hrl\").\n\n"
"-define(i(__X__), {immediate, __X__ }).\n\n"
"-type fate_arg_immediate(T) :: {immediate, T}.\n"
"-type fate_arg_var() :: {var, integer()}.\n"
"-type fate_arg_arg() :: {arg, integer()}.\n"
"-type fate_arg_stack() :: {stack, integer()}.\n"
"-type fate_arg() :: fate_arg_immediate()\n"
" | fate_arg_var()\n"
" | fate_arg_arg()\n"
" | fate_arg_stack().\n\n"
"-type fate_arg_immediate() :: {immediate, aeb_fate_data:fate_type()}.\n"
, []),
io:format(File, "~s", [Types]),
io:format(File, "-type fate_code() :: ~s\n~s .\n\n",
[FirstType, FateTypes]),
io:format(File, "-export_type([ fate_code/0\n~s ]).\n\n", [TypeExports]),
io:format(File, "-export([ foo/0\n~s ]).\n\n", [ConstructorExports]),
io:format(File, "~s\n", [Constructors]),
io:format(File, "foo() -> \"A temp hack.\".\n", []),
file:close(File).
gen_type(#{type_name := TypeName, type := Type}) ->
lists:flatten(io_lib:format("-type ~-26s :: ~s.\n",
[TypeName, Type])).
gen_fate_code_type(#{type_name := TypeName}) ->
lists:flatten(io_lib:format(" | ~s\n", [TypeName])).
gen_type_exports(#{type_name := TypeName}) ->
lists:flatten(io_lib:format(" , ~s/0\n", [TypeName--"()"])).
gen_constructor_exports(#{constructor_type := Function}) ->
lists:flatten(io_lib:format(" , ~s\n", [Function])).
gen_constructors(#{constructor := Function, format := atomic,
type_name := Type, opname := Name}) ->
lists:flatten(io_lib:format("-spec ~s() -> ~s.\n"
"~s() ->\n"
" ~w.\n\n",
[Function, Type, Function, Name]));
gen_constructors(#{constructor := Function, format := ArgSpec,
type_name := Type, opname := Name}) ->
ArgTypeSpecs = gen_arg_type_specs(ArgSpec),
Args = gen_arg_names(0, ArgSpec),
UseArgs = gen_arg_uses(0, ArgSpec),
lists:flatten(io_lib:format("-spec ~s(~s) -> ~s.\n"
"~s(~s) ->\n"
" {~w, ~s}.\n\n",
[Function, ArgTypeSpecs, Type,
Function, Args, Name, UseArgs])).
gen_arg_type_specs([]) -> [];
gen_arg_type_specs([a]) -> "fate_arg()";
gen_arg_type_specs([is]) -> "aeb_fate_data:fate_string()";
gen_arg_type_specs([ii]) -> "aeb_fate_data:fate_integer()";
gen_arg_type_specs([li]) -> "[aeb_fate_data:fate_integer()]";
gen_arg_type_specs([t]) -> "aeb_fate_data:fate_type_type()";
gen_arg_type_specs([a | Args]) -> "fate_arg(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([is | Args]) -> "aeb_fate_data:fate_string(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([ii | Args]) -> "aeb_fate_data:fate_integer(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([li | Args]) -> "[aeb_fate_data:fate_integer()], " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([t | Args]) -> "aeb_fate_data:fate_type_type(), " ++ gen_arg_type_specs(Args).
gen_arg_names(_, []) ->
[];
gen_arg_names(N, [_]) -> io_lib:format("Arg~w", [N]);
gen_arg_names(N, [_|Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_names(N+1, Args).
gen_arg_uses(_, []) ->
[];
gen_arg_uses(N, [a]) -> io_lib:format("Arg~w", [N]);
gen_arg_uses(N, [is]) -> io_lib:format("{immediate, Arg~w}", [N]);
gen_arg_uses(N, [ii]) -> io_lib:format("{immediate, Arg~w}", [N]);
gen_arg_uses(N, [li]) -> io_lib:format("[{immediate, I} || I <- Arg~w]", [N]);
gen_arg_uses(N, [t]) -> io_lib:format("Arg~w", [N]);
gen_arg_uses(N, [a | Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [is | Args]) ->
io_lib:format("{immediate, Arg~w}, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [ii | Args]) ->
io_lib:format("{immediate, Arg~w}, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [li | Args]) ->
io_lib:format("[{immediate, I} || I <- Arg~w], ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [t | Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_uses(N+1, Args).
ops_exports(Module, HrlFile, Exports) ->
lists:flatten(io_lib:format(
"-module(~w).\n\n"
"-export([ ~s ]).\n\n"
"-include_lib(\"aebytecode/" ++ HrlFile ++"\").\n\n"
"%%====================================================================\n"
"%% API\n"
"%%====================================================================\n",
[Module, Exports])).
gen_mnemonic(#{opname := Name, macro := Macro}) ->
lists:flatten(io_lib:format("mnemonic(~21s) -> ~21w ;\n",
[Macro, Name])).
gen_m_to_op(#{opname := Name, macro := Macro}) ->
lists:flatten(io_lib:format("m_to_op(~21w) -> ~21s ;\n",
[Name, Macro])).
gen_args(#{macro := Macro, args := Args}) ->
lists:flatten(io_lib:format("args(~21s) -> ~2w ;\n",
[Macro, Args])).
gen_bb(#{macro := Macro, end_bb := EndBB}) ->
lists:flatten(io_lib:format("end_bb(~21s) -> ~w ;\n",
[Macro, EndBB])).
prelude(Doc) ->
"%%%-------------------------------------------------------------------\n"
"%%% @copyright (C) 2019, Aeternity Anstalt\n"
"%%%\n"
"%%% === === N O T E : This file is generated do not edit. === ===\n"
"%%%\n"
"%%% Source is in aeb_fate_generate_ops.erl\n"
"%%% @doc\n"
"%%% "++Doc++
"%%% @end\n"
"%%%-------------------------------------------------------------------\n\n".
gen_defines(#{opname := Name, opcode := OpCode}) ->
lists:flatten(io_lib:format("-define(~-26w, 16#~2.16.0b).\n", [Name, OpCode])).
gen([]) ->
[];
gen([{OpName, OpCode, Args, EndBB, Gas, FateFormat, Constructor, Doc} | Rest]) ->
Name = atom_to_list(OpName),
LowerName = string:to_lower(Name),
TypeName = "fate_" ++ LowerName ++ "()",
Macro = "?" ++ Name,
Type = case FateFormat of
atomic -> io_lib:format("~w", [OpName]);
ArgTypes ->
io_lib:format("{~w, ~s}", [OpName, expand_types(ArgTypes)])
end,
ConstructorType = atom_to_list(Constructor) ++ "/" ++ io_lib:format("~w", [Args]),
[#{ opname => OpName
, opcode => OpCode
, args => Args
, end_bb => EndBB
, format => FateFormat
, macro => Macro
, type_name => TypeName
, doc => Doc
, gas => Gas
, type => Type
, constructor => Constructor
, constructor_type => ConstructorType
}| gen(Rest)].
expand_types([]) -> "";
expand_types([T]) -> expand_type(T);
expand_types([T|Ts]) ->expand_type(T) ++ ", " ++ expand_types(Ts).
expand_type(a) -> "fate_arg()";
expand_type(is) -> "fate_arg_immediate(aeb_fate_data:fate_string())";
expand_type(ii) -> "fate_arg_immediate(aeb_fate_data:fate_integer())";
expand_type(li) -> "[fate_arg_immediate(aeb_fate_data:fate_integer())]";
expand_type(t) -> "aeb_fate_data:fate_type_type()".
generate_scanner(TemplateFile, Outfile, Path, Ops) ->
{ok, Template} = file:read_file(filename:join(Path,TemplateFile)),
Tokens = lists:flatten([gen_token(Op) || Op <- Ops]),
NewFile = insert_tokens_in_template(Template, Tokens),
file:write_file(filename:join(Path, Outfile), NewFile).
gen_token(#{opname := OpName}) ->
Name = atom_to_list(OpName),
io_lib:format("~-28s: {token, {mnemonic, TokenLine, ~w}}.\n",
[Name, OpName]).
insert_tokens_in_template(<<"###REPLACEWITHOPTOKENS###", Rest/binary >>, Tokens) ->
[Tokens, Rest];
insert_tokens_in_template(<<"###REPLACEWITHNOTE###", Rest/binary >>, Tokens) ->
[
"%%%\n"
"%%% === === N O T E : This file is generated do not edit. === ===\n"
"%%%\n"
"%%% Source is in aeb_fate_generate_ops.erl\n"
"%%% and aeb_fate_asm_scan.template"
| insert_tokens_in_template(Rest, Tokens)];
insert_tokens_in_template(<<B,Rest/binary>>, Tokens) ->
[B|insert_tokens_in_template(Rest, Tokens)].
gen_asm_pp(Module, Path, Ops) ->
Filename = filename:join(Path, atom_to_list(Module)) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Formats = lists:flatten([gen_format(Op)++"\n" || Op <- Ops]),
io:format(File, "~s", [prelude(" Provide pretty printing functuions for "
"Fate instructions.\n")]),
io:format(File, "-module(~w).\n\n", [Module]),
io:format(File,
"-export([format_op/2]).\n\n"
"format_arg(t, T) ->\n"
" io_lib:format(\"~~p \", [T]);\n"
"format_arg(li, {immediate, LI}) ->\n"
" aeb_fate_data:format(LI);\n"
"format_arg(_, {immediate, I}) ->\n"
" aeb_fate_data:format(I);\n"
"format_arg(a, {arg, N}) -> io_lib:format(\"arg~~p\", [N]);\n"
"format_arg(a, {var, N}) -> io_lib:format(\"var~~p\", [N]);\n"
"format_arg(a, {stack, 0}) -> \"a\";\n"
"format_arg(a, {stack, N}) -> io_lib:format(\"a~~p\", [N]).\n\n"
"lookup(Name, Symbols) ->\n"
" maps:get(Name, Symbols, io_lib:format(\"~~w\",[Name])).\n\n"
"~s"
, [Formats]),
io:format(File, "format_op(Op, _Symbols) -> io_lib:format(\";; Bad Op: ~~w\\n\", [Op]).\n", []),
file:close(File).
gen_format(#{opname := Name}) when ('CALL' =:= Name) or (Name =:= 'CALL_T') ->
io_lib:format("format_op({~w, {immediate, Function}}, Symbols) ->\n"
"[\"~s \", lookup(Function, Symbols)];",
[Name, atom_to_list(Name)]);
gen_format(#{opname := Name}) when (Name =:= 'CALL_R') or (Name =:= 'CALL_TR') ->
io_lib:format("format_op({~w, {immediate, Contract}, {immediate, Function}}, Symbols) ->\n"
"[\"~s \", lookup(Contract, Symbols), \".\", lookup(Function, Symbols)];\n"
"format_op({~w, Contract, {immediate, Function}}, Symbols) ->\n"
"[\"~s \", format_arg(a, Contract), \".\", lookup(Function, Symbols)];",
[Name, atom_to_list(Name), Name, atom_to_list(Name)]);
gen_format(#{opname := Name, format := atomic}) ->
io_lib:format("format_op(~w, _) -> [\"~s\"];", [Name, atom_to_list(Name)]);
gen_format(#{opname := Name, format := Args}) ->
NameAsString = atom_to_list(Name),
case Args of
[T0] ->
io_lib:format(
"format_op({~w, Arg0}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0)];",
[Name, NameAsString, T0]);
[T0, T1] ->
io_lib:format(
"format_op({~w, Arg0, Arg1}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1)];",
[Name, NameAsString, T0, T1]);
[T0, T1, T2] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2)];",
[Name, NameAsString, T0, T1, T2]);
[T0, T1, T2, T3] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3)];",
[Name, NameAsString, T0, T1, T2, T3]);
[T0, T1, T2, T3, T4] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4)];",
[Name, NameAsString, T0, T1, T2, T3, T4]);
[T0, T1, T2, T3, T4, T5] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5]);
[T0, T1, T2, T3, T4, T5, T6] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5),"
"\" \", format_arg(~w, Arg6)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5, T6]);
[T0, T1, T2, T3, T4, T5, T6, T7] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5),"
"\" \", format_arg(~w, Arg6),"
"\" \", format_arg(~w, Arg7)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5, T6, T7])
end.
test_asm_generator(Filename) ->
{ok, File} = file:open(Filename, [write]),
Instructions = lists:flatten([gen_instruction(Op)++"\n" || Op <- gen(ops_defs())]),
io:format(File,
";; CONTRACT all_instructions\n\n"
";; Dont expect this contract to typecheck or run.\n"
";; Just used to check assembler rountrip of all instruction.\n\n"
"FUNCTION foo () : {tuple, []}\n"
"~s"
, [Instructions]),
io:format(File, " RETURNR ()\n", []),
file:close(File).
gen_instruction(#{opname := Name, format := atomic}) ->
io_lib:format(" ~s\n", [Name]);
gen_instruction(#{opname := Name, format := ArgTypes}) ->
Args = lists:flatten(lists:join(" ", [gen_arg(A) || A <- ArgTypes])),
I = io_lib:format(" ~s ~s\n", [Name, Args]),
I.
%% This should be done with a Quick Check generator...
gen_arg(a) -> any_arg();
gen_arg(is) -> "foo";
gen_arg(ii) -> gen_int();
gen_arg(li) -> "[1, 2, 3]";
gen_arg(t) -> "integer".
any_arg() ->
element(rand:uniform(5), {"a", stack_arg(), var_arg(), arg_arg(), imm_arg()}).
stack_arg() -> "a" ++ integer_to_list(rand:uniform(255)-1).
arg_arg() -> "arg" ++ integer_to_list(rand:uniform(256)-1).
var_arg() -> "var" ++ integer_to_list(rand:uniform(256)-1).
imm_arg() ->
case rand:uniform(15) of
1 -> gen_int();
2 -> gen_int();
3 -> gen_int();
4 -> gen_int();
5 -> gen_int();
6 -> gen_int();
7 -> gen_int();
8 -> gen_address();
9 -> gen_boolean();
10 -> gen_string();
11 -> gen_map();
12 -> gen_list();
13 -> gen_bits();
14 -> gen_tuple();
15 -> gen_variant()
end.
gen_key() ->
case rand:uniform(15) of
1 -> gen_int();
2 -> gen_int();
3 -> gen_int();
4 -> gen_int();
5 -> gen_int();
6 -> gen_int();
7 -> gen_int();
8 -> gen_address();
9 -> gen_boolean();
10 -> gen_string();
11 -> gen_string();
12 -> gen_list();
13 -> gen_bits();
14 -> gen_tuple();
15 -> gen_variant()
end.
gen_boolean() ->
element(rand:uniform(2), {"true", "false"}).
gen_int() ->
element(rand:uniform(4),
{ integer_to_list(rand:uniform(round(math:pow(10,40))))
, integer_to_list(rand:uniform(10))
, integer_to_list(rand:uniform(100))
, io_lib:format("0x~.16b",[rand:uniform(round(math:pow(10,10)))])}).
gen_address() -> "#nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv".
gen_string() -> "\"foo\"".
gen_map() -> "{ " ++ gen_key() ++ " => " ++ imm_arg() ++ "}".
gen_list() ->
case rand:uniform(4) of
1 -> "[]";
2 -> "[" ++ lists:join(", ", gen_list_elements()) ++ " ]";
3 -> "[ " ++ imm_arg() ++ " ]";
4 -> "[ " ++ imm_arg() ++ ", " ++ imm_arg() ++ " ]"
end.
%% Not type correct.
gen_list_elements() ->
case rand:uniform(3) of
1 -> [imm_arg() | gen_list_elements()];
2 -> [];
3 -> [imm_arg()]
end.
gen_bits() ->
element(rand:uniform(3),
{"<>"
,"!<>"
, "101010"}).
gen_tuple() ->
case rand:uniform(3) of
1 -> "()";
2 -> "(42)";
3 -> "(" ++ imm_arg() ++ ")"
end.
gen_variant() ->
case rand:uniform(3) of
1 -> "(| 5 | 2 | (1, \"foo\", ()) |)";
2 -> "(| 2 | 1 | ( " ++ imm_arg() ++ " ) |)";
3 -> "(| 2 | 0 | ( " ++ imm_arg() ++ ", " ++ imm_arg() ++ " ) |)"
end.
%% TODO: add gas cost.
generate_documentation(Filename) ->
{ok, File} = file:open(Filename, [write]),
Instructions = lists:flatten([gen_doc(Op)++"\n" || Op <- gen(ops_defs())]),
io:format(File,
"### Operations\n\n"
"| OpCode | Name | Args | Description |\n"
"| --- | --- | --- | --- |\n"
"~s"
, [Instructions]),
io:format(File, "\n", []),
file:close(File).
gen_doc(#{ opname := Name
, opcode := OpCode
, args := Args
, end_bb := EndBB
, format := FateFormat
, macro := Macro
, type_name := TypeName
, doc := Doc
, gas := Gas
, type := Type
, constructor := Constructor
, constructor_type := ConstructorType
}) ->
Arguments =
case FateFormat of
atomic -> "";
_ -> lists:join(" ",
[format_arg_doc(A) ||
A <-
lists:zip(FateFormat,
lists:seq(0,length(FateFormat)-1))])
end,
io_lib:format("| 0x~.16b | ~w | ~s | ~s |\n",
[ OpCode
, Name
, Arguments
, Doc]).
format_arg_doc({a, N}) -> io_lib:format("Arg~w", [N]);
format_arg_doc({is,N}) -> "Identifier";
format_arg_doc({ii,N}) -> "Integer";
format_arg_doc({li,N}) -> "[Integers]";
format_arg_doc({t,N}) -> "Type".

View File

@ -1,15 +1,12 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Opcodes
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 02 Oct 2017
%%% Created : 2 Oct 2017
%%%-------------------------------------------------------------------
-module(gmb_opcodes).
-vsn("3.4.1").
-module(aeb_opcodes).
-export([ dup/1
, mnemonic/1
@ -20,7 +17,7 @@
, swap/1
]).
-include_lib("gmbytecode/include/gmb_opcodes.hrl").
-include_lib("aebytecode/include/aeb_opcodes.hrl").
%%====================================================================
@ -54,7 +51,6 @@ opcode(?SHL) -> ?SHL;
opcode(?SHR) -> ?SHR;
opcode(?SAR) -> ?SAR;
opcode(?SHA3) -> ?SHA3;
opcode(?CREATOR) -> ?CREATOR;
opcode(?ADDRESS) -> ?ADDRESS;
opcode(?BALANCE) -> ?BALANCE;
opcode(?ORIGIN) -> ?ORIGIN;
@ -195,7 +191,6 @@ mnemonic(?SHL) -> 'SHL' ;
mnemonic(?SHR) -> 'SHR' ;
mnemonic(?SAR) -> 'SAR' ;
mnemonic(?SHA3) -> 'SHA3' ;
mnemonic(?CREATOR) -> 'CREATOR' ;
mnemonic(?ADDRESS) -> 'ADDRESS' ;
mnemonic(?BALANCE) -> 'BALANCE' ;
mnemonic(?ORIGIN) -> 'ORIGIN' ;
@ -337,7 +332,6 @@ m_to_op('SHL') -> ?SHL ;
m_to_op('SHR') -> ?SHR ;
m_to_op('SAR') -> ?SAR ;
m_to_op('SHA3') -> ?SHA3 ;
m_to_op('CREATOR') -> ?CREATOR ;
m_to_op('ADDRESS') -> ?ADDRESS ;
m_to_op('BALANCE') -> ?BALANCE ;
m_to_op('ORIGIN') -> ?ORIGIN ;

View File

@ -1,21 +1,18 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc
%%% Handle interaction with the gmternity chain
%%% Handle interaction with the aeternity chain
%%% through calls to AEternity primitive operations at address 0.
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 18 Dec 2018
%%%-------------------------------------------------------------------
-module(gmb_primops).
-vsn("3.4.1").
-module(aeb_primops).
-export([ is_local_primop_op/1
, op_needs_type_check/1
]).
-include("gmb_opcodes.hrl").
-include("aeb_opcodes.hrl").
is_local_primop_op(Op) when ?PRIM_CALL_IN_MAP_RANGE(Op) -> true;
is_local_primop_op(Op) when ?PRIM_CALL_IN_CRYPTO_RANGE(Op) -> true;

View File

@ -1,12 +1,12 @@
{application, gmbytecode,
[{description, "Bytecode definitions, serialization and deserialization for the Gajumaru."},
{vsn, "3.4.1"},
{application, aebytecode,
[{description, "Bytecode definitions, serialization and deserialization for aeternity."},
{vsn, "2.0.1"},
{registered, []},
{applications,
[kernel,
stdlib,
eblake2,
gmserialization,
aeserialization,
getopt
]},
{env,[]},

View File

@ -1,5 +1,4 @@
-module(gmfateasm).
-vsn("3.4.1").
-module(aefateasm).
-export([main/1]).
@ -10,7 +9,7 @@
, {outfile, $o, "out", string, "Output file (experimental)"} ]).
usage() ->
getopt:usage(?OPT_SPEC, "gmfateasm").
getopt:usage(?OPT_SPEC, "aefateasm").
main(Args) ->
case getopt:parse(?OPT_SPEC, Args) of
@ -44,8 +43,8 @@ assemble(File, Opts) ->
Verbose = proplists:get_value(verbose, Opts, false),
case proplists:get_value(outfile, Opts, undefined) of
undefined ->
Asm = gmb_fate_asm:read_file(File),
{Env, BC} = gmb_fate_asm:asm_to_bytecode(Asm, Opts),
Asm = aeb_fate_asm:read_file(File),
{Env, BC} = aeb_fate_asm:asm_to_bytecode(Asm, Opts),
case Verbose of
true ->
io:format("Env: ~0p~n", [Env]);
@ -53,6 +52,6 @@ assemble(File, Opts) ->
end,
io:format("Code: ~0p~n", [BC]);
OutFile ->
gmb_fate_asm:assemble_file(File, OutFile, Opts)
aeb_fate_asm:assemble_file(File, OutFile, Opts)
end.

View File

@ -1,197 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2017, Aeternity Anstalt
%%% @doc
%%% Encode and decode data and function calls according to
%%% Sophia-AEVM-ABI
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 25 Jan 2018
%%%
%%%-------------------------------------------------------------------
-module(gmb_aevm_abi).
-vsn("3.4.1").
-define(HASH_SIZE, 32).
-export([ create_calldata/4
, check_calldata/3
, function_type_info/4
, function_type_hash/3
, arg_typerep_from_function/2
, type_hash_from_function_name/2
, typereps_from_type_hash/2
, function_name_from_type_hash/2
, get_function_hash_from_calldata/1
, is_payable/2
, abi_version/0
]).
-type hash() :: <<_:256>>. %% 256 = ?HASH_SIZE * 8.
-type function_name() :: binary(). %% String
-type typerep() :: gmb_aevm_data:type().
-type function_type_info() :: { FunctionHash :: hash()
, FunctionName :: function_name()
, Payable :: boolean()
, ArgType :: binary() %% binary typerep
, OutType :: binary() %% binary typerep
}.
-type type_info() :: [function_type_info()].
%%%===================================================================
%%% API
%%%===================================================================
%% Shall match ?ABI_AEVM_SOPHIA_1
-spec abi_version() -> integer().
abi_version() ->
1.
%%%===================================================================
%%% Handle calldata
create_calldata(FunName, Args, ArgTypes0, RetType) ->
ArgTypes = {tuple, ArgTypes0},
<<TypeHashInt:?HASH_SIZE/unit:8>> =
function_type_hash(list_to_binary(FunName), ArgTypes, RetType),
Data = gmb_heap:to_binary({TypeHashInt, list_to_tuple(Args)}),
{ok, Data}.
-spec check_calldata(binary(), type_info(), boolean()) ->
{'ok', typerep(), typerep()} | {'error', atom()}.
check_calldata(CallData, TypeInfo, CheckPayable) ->
%% The first element of the CallData should be the function name
case get_function_hash_from_calldata(CallData) of
{ok, Hash} ->
check_calldata(Hash, CallData, TypeInfo, CheckPayable);
{error, _What} ->
{error, bad_call_data}
end.
check_calldata(Hash, CallData, TypeInfo, true) ->
case is_payable(Hash, TypeInfo) of
{ok, true} -> check_calldata(Hash, CallData, TypeInfo, false);
{ok, false} -> {error, function_is_not_payable};
Err = {error, _} -> Err
end;
check_calldata(Hash, CallData, TypeInfo, false) ->
case typereps_from_type_hash(Hash, TypeInfo) of
{ok, ArgType, OutType} ->
try gmb_heap:from_binary({tuple, [word, ArgType]}, CallData) of
{ok, _Something} ->
{ok, {tuple, [word, ArgType]}, OutType};
{error, _} ->
{error, bad_call_data}
catch
_T:_E ->
{error, bad_call_data}
end;
{error, _} ->
{error, unknown_function}
end.
-spec get_function_hash_from_calldata(CallData::binary()) ->
{ok, binary()} | {error, term()}.
get_function_hash_from_calldata(CallData) ->
case gmb_heap:from_binary({tuple, [word]}, CallData) of
{ok, {HashInt}} -> {ok, <<HashInt:?HASH_SIZE/unit:8>>};
{error, _} = Error -> Error
end.
%%%===================================================================
%%% Handle type info from contract meta data
-spec function_type_info(function_name(), boolean(), [typerep()], typerep()) ->
function_type_info().
function_type_info(Name, Payable, ArgTypes, OutType) ->
ArgType = {tuple, ArgTypes},
{ function_type_hash(Name, ArgType, OutType)
, Name
, Payable
, gmb_heap:to_binary(ArgType)
, gmb_heap:to_binary(OutType)
}.
-spec function_type_hash(function_name(), typerep(), typerep()) -> hash().
function_type_hash(Name, ArgType, OutType) when is_binary(Name) ->
Bin = iolist_to_binary([ Name
, gmb_heap:to_binary(ArgType)
, gmb_heap:to_binary(OutType)
]),
%% Calculate a 256 bit digest BLAKE2b hash value of a binary
{ok, Hash} = eblake2:blake2b(?HASH_SIZE, Bin),
Hash.
-spec arg_typerep_from_function(function_name(), type_info()) ->
{'ok', typerep()} | {'error', 'bad_type_data' | 'unknown_function'}.
arg_typerep_from_function(Function, TypeInfo) ->
case lists:keyfind(Function, 2, TypeInfo) of
{_TypeHash, Function, ArgTypeBin, _OutTypeBin} ->
arg_typerep_from_type_binary(ArgTypeBin);
{_TypeHash, Function, _Payable, ArgTypeBin, _OutTypeBin} ->
arg_typerep_from_type_binary(ArgTypeBin);
false ->
{error, unknown_function}
end.
arg_typerep_from_type_binary(ArgTBin) ->
case gmb_heap:from_binary(typerep, ArgTBin) of
{ok, ArgT} -> {ok, ArgT};
{error,_} -> {error, bad_type_data}
end.
-spec typereps_from_type_hash(hash(), type_info()) ->
{'ok', typerep(), typerep()} | {'error', 'bad_type_data' | 'unknown_function'}.
typereps_from_type_hash(TypeHash, TypeInfo) ->
case lists:keyfind(TypeHash, 1, TypeInfo) of
{TypeHash, _Function, ArgTypeBin, OutTypeBin} ->
typereps_from_type_binaries(ArgTypeBin, OutTypeBin);
{TypeHash, _Function, _Payable, ArgTypeBin, OutTypeBin} ->
typereps_from_type_binaries(ArgTypeBin, OutTypeBin);
false ->
{error, unknown_function}
end.
typereps_from_type_binaries(ArgTBin, OutTBin) ->
case {gmb_heap:from_binary(typerep, ArgTBin), gmb_heap:from_binary(typerep, OutTBin)} of
{{ok, ArgT}, {ok, OutT}} -> {ok, ArgT, OutT};
{_, _} -> {error, bad_type_data}
end.
-spec function_name_from_type_hash(hash(), type_info()) ->
{'ok', function_name()}
| {'error', 'unknown_function'}.
function_name_from_type_hash(TypeHash, TypeInfo) ->
case lists:keyfind(TypeHash, 1, TypeInfo) of
{TypeHash, Function, _ArgTypeBin, _OutTypeBin} ->
{ok, Function};
{TypeHash, Function, _Payable, _ArgTypeBin, _OutTypeBin} ->
{ok, Function};
false ->
{error, unknown_function}
end.
-spec type_hash_from_function_name(function_name(), type_info()) ->
{'ok', hash()}
| {'error', 'unknown_function'}.
type_hash_from_function_name(Name, TypeInfo) ->
case lists:keyfind(Name, 2, TypeInfo) of
{TypeHash, Name, _ArgTypeBin, _OutTypeBin} ->
{ok, TypeHash};
{TypeHash, Name, _Payable, _ArgTypeBin, _OutTypeBin} ->
{ok, TypeHash};
false ->
{error, unknown_function}
end.
-spec is_payable(hash(), type_info()) -> {ok, boolean()} | {error, 'unknown_function'}.
is_payable(TypeHash, TypeInfo) ->
case lists:keyfind(TypeHash, 1, TypeInfo) of
{TypeHash, _Function, _ArgTypeBin, _OutTypeBin} ->
{ok, true};
{TypeHash, _Function, Payable, _ArgTypeBin, _OutTypeBin} ->
{ok, Payable};
false ->
{error, unknown_function}
end.

View File

@ -1,31 +0,0 @@
-module(gmb_aevm_data).
-vsn("3.4.1").
-export_type([data/0,
type/0,
heap/0]).
-type type() :: word | signed_word | string | typerep | function
| {list, type()}
| {option, type()}
| {tuple, [type()]}
| {variant, [[type()]]}.
-type data() :: none
| {some, data()}
| {option, data()}
| word
| string
| {list, data()}
| {tuple, [data()]}
| {variant, integer(), [data()]}
| integer()
| binary()
| [data()]
| {}
| {data()}
| {data(), data()}.
-type heap() :: binary().

View File

@ -1,82 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc
%%% Encode and decode data and function calls according to
%%% Sophia-FATE-ABI
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 11 Jun 2019
%%%
%%%-------------------------------------------------------------------
-module(gmb_fate_abi).
-vsn("3.4.1").
-export([ create_calldata/2
, decode_calldata/2
, get_function_hash_from_calldata/1
, get_function_name_from_function_hash/2
, get_function_type_from_function_hash/2
, abi_version/0 ]).
-include("../include/gmb_fate_data.hrl").
%%%===================================================================
%%% API
%%%===================================================================
%% Shall match ?ABI_FATE_SOPHIA_1
-spec abi_version() -> integer().
abi_version() ->
3.
-spec create_calldata(list(), [term()]) -> {ok, binary()}.
create_calldata(FunName, Args) ->
FunctionId = gmb_fate_code:symbol_identifier(list_to_binary(FunName)),
{ok, gmb_fate_encoding:serialize(
gmb_fate_data:make_tuple({FunctionId,
gmb_fate_data:make_tuple(list_to_tuple(Args))}))}.
-spec decode_calldata(list(), binary()) -> {ok, term()} | {error, term()}.
decode_calldata(FunName, Calldata) ->
FunctionId = gmb_fate_code:symbol_identifier(list_to_binary(FunName)),
try ?FATE_TUPLE_ELEMENTS(gmb_fate_encoding:deserialize(Calldata)) of
[FunctionId, FateArgs] -> {ok, ?FATE_TUPLE_ELEMENTS(FateArgs)};
_ -> {error, decode_error}
catch _:_ ->
{error, decode_error}
end.
-spec get_function_name_from_function_hash(binary(), gmb_fate_code:fcode()) ->
{ok, term()} | {error, term()}.
get_function_name_from_function_hash(<<SymbolHash:4/binary, _:28/binary>>, FateCode) ->
get_function_name_from_function_hash(SymbolHash, FateCode);
get_function_name_from_function_hash(SymbolHash = <<_:4/binary>>, FateCode) ->
Symbols = gmb_fate_code:symbols(FateCode),
case maps:get(SymbolHash, Symbols, undefined) of
undefined -> {error, no_function_matching_function_hash};
Function -> {ok, Function}
end.
-spec get_function_hash_from_calldata(binary()) ->
{ok, binary()} | {error, term()}.
get_function_hash_from_calldata(CallData) ->
try ?FATE_TUPLE_ELEMENTS(gmb_fate_encoding:deserialize(CallData)) of
[FunHash, _Args] -> {ok, FunHash};
_ -> {error, bad_calldata}
catch _:_ ->
{error, bad_calldata}
end.
-spec get_function_type_from_function_hash(binary(), gmb_fate_code:fcode()) ->
{ok, term(), term()} | {error, term()}.
get_function_type_from_function_hash(<<SymbolHash:4/binary, _:28/binary>>, FateCode) ->
get_function_type_from_function_hash(SymbolHash, FateCode);
get_function_type_from_function_hash(SymbolHash, FateCode) ->
Functions = gmb_fate_code:functions(FateCode),
case maps:get(SymbolHash, Functions, undefined) of
undefined ->
{error, no_function_matching_function_hash};
{_Attrs, {ArgTypes, RetType}, _Code} ->
{ok, ArgTypes, RetType}
end.

View File

@ -1,522 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc Assembler for Fate machine code.
%%% @end
%%%
%%% Fate code exists in 3 formats:
%%%
%%% 1. Fate byte code. This format is under consensus.
%%% 2. Fate assembler. This is a text represenation of fate code.
%%% This is not under consensus and other
%%% implemenation and toolchains could have
%%% their own format.
%%% 3. Internal. This is an Erlang representation of fate code
%%% Used by this particular engin implementation.
%%%
%%% This library handles all tree representations.
%%% The byte code format is described in a separate document.
%%% The internal format is described in a separate document.
%%% The text representation is described here:
%%%
%%% Assembler code can be read from a file.
%%% The assembler has the following format
%%% Comments start with 2 semicolons and runs till end of line
%%% ;; This is a comment
%%% Opcode mnemonics start with an upper case letter.
%%% DUP
%%% Identifiers start with a lower case letter
%%% an_identifier
%%% References to function arguments start with arg followed by an integer
%%% arg0
%%% References to variables/registers start with var followed by an integer
%%% var0
%%% References to the top of the stack is the letter a (for accumulator)
%%% a
%%%
%%% Immediate values can be of 10 types:
%%% 1a. Integers as decimals: {Digits} or -{Digits}
%%% 42
%%% -2374683271468723648732648736498712634876147
%%% 1b. Integers as Hexadecimals:: 0x{Hexdigits}
%%% 0x0deadbeef0
%%% 2a. account addresses, a base58c encoded string prefixed with @ak_
%%% 2b. contract address: @ct_{base58char}+
%%% 2c. oracle address: @ok_{base58char}+
%%% 2d. oracle query id: @oq_{base58char}+
%%% 2e. channel address: @ch_{base58char}+
%%% 3. Boolean true or false
%%% true
%%% false
%%% 4. Strings "{Characters}"
%%% "Hello"
%%% 5. Map { Key => Value }
%%% {}
%%% { 1 => { "foo" => true, "bar" => false}
%%% 6. Lists [ Elements ]
%%% []
%%% [1, 2]
%%% 7. Bit field < Bits > or !< Bits >
%%% <000>
%%% <1010 1010>
%%% <>
%%% !<>
%%% 8. Tuples ( Elements )
%%% ()
%%% (1, "foo")
%%% 9. Variants: (| [Arities] | Tag | ( Elements ) |)
%%% (| [0,1,2] | 2 | ( "foo", 12) |)
%%% 10. Bytes: #{base64char}+
%%% #AQIDCioLFQ==
%%%
%%% Where Digits: [0123456789]
%%% Hexdigits: [0123456789abcdef]
%%% base58char: [123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]
%%% base64char: [ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxy0123456789+/=]
%%% Characters: as a code literal - any printable ascii character 0..255 (except " no quoting yet)
%%% the type supports an array of bytes (all values 0..255).
%%% Key: any value except for a map
%%% Bits: 01 or space
%%% Elements: Nothing or Value , Elements
%%% Size: Digits
%%% Tag: Digits
%%%
%%% Updated : 22 Jan 2025
%%% Created : 21 Dec 2017
%%%-------------------------------------------------------------------
-module(gmb_fate_asm).
-vsn("3.4.1").
-export([ assemble_file/3
, asm_to_bytecode/2
, function_call/1
, pp/1
, read_file/1
, strip/1
, to_asm/1
]).
-include_lib("gmbytecode/include/gmb_fate_opcodes.hrl").
-include_lib("gmbytecode/include/gmb_fate_data.hrl").
-define(HASH_BYTES, 32).
assemble_file(InFile, OutFile, Options) ->
Asm = read_file(InFile),
{_Env, BC} = asm_to_bytecode(Asm, Options),
ok = file:write_file(OutFile, BC).
function_call(String) ->
{ok, Tokens, _} = gmb_fate_asm_scan:scan(String),
parse_function_call(Tokens).
parse_function_call([{id,_,Name}, {'(',_}| Rest]) ->
{Args, []} = to_args(Rest),
gmb_fate_encoding:serialize(
{tuple, {mk_hash(Name), {tuple, list_to_tuple(Args)}}}).
to_args([{')', _}]) -> {[], []};
to_args(Tokens) ->
case parse_value(Tokens) of
{Arg, [{',', _} | Rest]} ->
{More, Rest2} = to_args(Rest),
{[Arg|More], Rest2};
{Arg, [{')', _} | Rest]} ->
{[Arg], Rest}
end.
pp(FateCode) ->
Listing = to_asm(FateCode),
io_lib:format("~ts~n",[Listing]).
to_asm(FateCode) ->
Functions = gmb_fate_code:functions(FateCode),
Symbols = gmb_fate_code:symbols(FateCode),
Annotations = gmb_fate_code:annotations(FateCode),
insert_comments(get_comments(Annotations), 1,
lists:flatten(
io_lib:format("~s",
[format_functions(Functions, Symbols)]))).
insert_comments([{L,C}|Comments], L, String) ->
";; " ++ C ++ "\n" ++ insert_comments(Comments, L + 1, String);
insert_comments(Comments, L, [$\n|String]) ->
"\n" ++ insert_comments(Comments, L+1, String);
insert_comments(Comments, L, [C|Rest]) ->
[C|insert_comments(Comments, L, Rest)];
insert_comments([],_,[]) -> [];
insert_comments([{L,C}|Rest], _, []) ->
";; " ++ C ++ "\n" ++ insert_comments(Rest, L + 1, []).
format_functions(Functions, Symbols) ->
[format(lookup(Name, Symbols),
Sig,
lists:sort(maps:to_list(CodeMap)),
Symbols)
||
{Name, {_Attrs, Sig, CodeMap}} <- maps:to_list(Functions)].
format(Name, Sig, BBs, Symbols) ->
[ "FUNCTION "
, Name
, format_sig(Sig)
, "\n"
, format_bbs(BBs, Symbols)].
format_sig({Args, RetType}) ->
[ "( "
, format_arg_types(Args)
, ") : "
, format_type(RetType)].
format_arg_types([]) -> "";
format_arg_types([T]) -> format_type(T);
format_arg_types([T|Ts]) ->
[format_type(T)
, ", "
, format_arg_types(Ts)].
format_type(T) ->
%% TODO: Limit to ok types.
io_lib:format("~p", [T]).
format_bbs([], _) ->
[];
format_bbs([{BB, Code}|Rest], Symbols) ->
[ io_lib:format(" ;; BB : ~p~n", [BB])
, format_code(Code, Symbols)
| format_bbs(Rest, Symbols)].
format_code([], _) ->
"";
format_code([Op|Rest], Symbols) ->
[" ",
gmb_fate_pp:format_op(Op, Symbols),
"\n",
format_code(Rest, Symbols)].
read_file(Filename) ->
{ok, File} = file:read_file(Filename),
binary_to_list(File).
asm_to_bytecode(AssemblerCode, Options) ->
{ok, Tokens, _} = gmb_fate_asm_scan:scan(AssemblerCode),
case proplists:lookup(pp_tokens, Options) of
{pp_tokens, true} ->
io:format("Tokens ~p~n",[Tokens]);
none ->
ok
end,
Env = #{ fate_code => gmb_fate_code:new()
, functions => #{}
},
Env1 = to_bytecode(Tokens, none, Env, [], Options),
FateCode = maps:get(fate_code, Env1),
FunctionsMap = maps:get(functions, Env1),
Functions = [X || {_, X} <- lists:sort(maps:to_list(FunctionsMap))],
FunctionsBin = iolist_to_binary(Functions),
ByteCode = gmb_fate_code:serialize(FateCode, FunctionsBin, Options),
{Env, ByteCode}.
strip(ByteCode) ->
{Code, _Rest} = gmser_rlp:decode_one(ByteCode),
Code.
%% -------------------------------------------------------------------
%% Parser
%% Asm tokens -> Fate code env
%% -------------------------------------------------------------------
to_bytecode([{function,_line, 'FUNCTION'}|Rest], Address, Env, Code, Opts) ->
Env2 = insert_fun(Address, Code, Env),
{Fun, Rest2} = to_fun_def(Rest),
to_bytecode(Rest2, Fun, Env2, [], Opts);
to_bytecode([{mnemonic,_line, Op}|Rest], Address, Env, Code, Opts) ->
OpCode = gmb_fate_opcodes:m_to_op(Op),
to_bytecode(Rest, Address, Env, [OpCode|Code], Opts);
to_bytecode([{arg,_line, N}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [{arg, N}|Code], Opts);
to_bytecode([{var,_line, N}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [{var, N}|Code], Opts);
to_bytecode([{stack,_line}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [{stack, 0}|Code], Opts);
to_bytecode([{int,_line, Int}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [{immediate, Int}|Code], Opts);
to_bytecode([{boolean,_line, Bool}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env, [{immediate, Bool}|Code], Opts);
to_bytecode([{string,_line, String}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_string(String)}|Code],
Opts);
to_bytecode([{object,_line, {address, Value}}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_address(Value)}|Code],
Opts);
to_bytecode([{object,_line, {contract, Value}}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_contract(Value)}|Code],
Opts);
to_bytecode([{object,_line, {oracle, Value}}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_oracle(Value)}|Code],
Opts);
to_bytecode([{object,_line, {oracle_query, Value}}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_oracle_query(Value)}|Code],
Opts);
to_bytecode([{object,_line, {channel, Value}}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_contract(Value)}|Code],
Opts);
to_bytecode([{bytes,_line, Value}|Rest],
Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_bytes(Value)}|Code],
Opts);
to_bytecode([{contract_bytearray,_line, FateCode}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_contract_bytearray(FateCode)}|Code],
Opts);
to_bytecode([{id,_line, ID}|Rest], Address, Env, Code, Opts) ->
{Env2, Id} = insert_symbol(list_to_binary(ID), Env),
to_bytecode(Rest, Address, Env2, [{immediate, Id}|Code], Opts);
to_bytecode([{'{',_line}|Rest], Address, Env, Code, Opts) ->
{Map, Rest2} = parse_map(Rest),
to_bytecode(Rest2, Address, Env, [{immediate, Map}|Code], Opts);
to_bytecode([{'[',_line}|Rest], Address, Env, Code, Opts) ->
{List, Rest2} = parse_list(Rest),
to_bytecode(Rest2, Address, Env, [{immediate, List}|Code], Opts);
to_bytecode([{'(',_line}|Rest], Address, Env, Code, Opts) ->
{Elements, Rest2} = parse_tuple(Rest),
Tuple = gmb_fate_data:make_tuple(list_to_tuple(Elements)),
to_bytecode(Rest2, Address, Env, [{immediate, Tuple}|Code], Opts);
to_bytecode([{start_variant,_line}|_] = Tokens, Address, Env, Code, Opts) ->
{Arities, Tag, Values, Rest} = parse_variant(Tokens),
Variant = gmb_fate_data:make_variant(Arities, Tag, Values),
to_bytecode(Rest, Address, Env, [{immediate, Variant}|Code], Opts);
to_bytecode([{typerep,_line}|Rest], Address, Env, Code, Opts) ->
{Type, Rest1} = to_type(Rest),
TypeRep = gmb_fate_data:make_typerep(Type),
to_bytecode(Rest1, Address, Env, [{immediate, TypeRep}|Code], Opts);
to_bytecode([{bits,_line, Bits}|Rest], Address, Env, Code, Opts) ->
to_bytecode(Rest, Address, Env,
[{immediate, gmb_fate_data:make_bits(Bits)}|Code], Opts);
to_bytecode([{comment, Line, Comment}|Rest], Address, Env, Code, Opts) ->
Env2 = insert_annotation(comment, Line, Comment, Env),
to_bytecode(Rest, Address, Env2, Code, Opts);
to_bytecode([], Address, Env, Code,_Opts) ->
insert_fun(Address, Code, Env).
parse_map([{'}',_line}|Rest]) ->
{#{}, Rest};
parse_map(Tokens) ->
{Key, [{arrow, _} | Rest]} = parse_value(Tokens),
{Value, Rest2} = parse_value(Rest),
case Rest2 of
[{',',_} | Rest3] ->
{Map, Rest4} = parse_map(Rest3),
{Map#{Key => Value}, Rest4};
[{'}',_} | Rest3] ->
{#{Key => Value}, Rest3}
end.
parse_list([{']',_line}|Rest]) ->
{[], Rest};
parse_list(Tokens) ->
{Head , Rest} = parse_value(Tokens),
case Rest of
[{',',_} | Rest2] ->
{Tail, Rest3} = parse_list(Rest2),
{[Head | Tail], Rest3};
[{']',_} | Rest3] ->
{[Head], Rest3}
end.
parse_tuple([{')',_line}|Rest]) ->
{[], Rest};
parse_tuple(Tokens) ->
{Head , Rest} = parse_value(Tokens),
case Rest of
[{',',_} | Rest2] ->
{Tail, Rest3} = parse_tuple(Rest2),
{[Head | Tail], Rest3};
[{')',_} | Rest3] ->
{[Head], Rest3}
end.
parse_variant([{start_variant,_line}
, {'[', _}
| Rest]) ->
{Arities, Rest2} = parse_list(Rest),
%% Make sure Arities is a list of bytes.
Arities = [A || A <- Arities,
is_integer(A), A < 256],
[{'|',_}
, {int,_, Tag}
, {'|',_}
, {'(',_} | Rest3] = Rest2,
{Elements , [{end_variant, _} | Rest4]} = parse_tuple(Rest3),
Size = length(Arities),
if 0 =< Tag, Tag < Size ->
Arity = lists:nth(Tag+1, Arities),
if length(Elements) =:= Arity ->
{Arities, Tag, list_to_tuple(Elements), Rest4}
end
end.
parse_value([{int,_line, Int} | Rest]) -> {Int, Rest};
parse_value([{boolean,_line, Bool} | Rest]) -> {Bool, Rest};
parse_value([{'{',_line} | Rest]) -> parse_map(Rest);
parse_value([{'[',_line} | Rest]) -> parse_list(Rest);
parse_value([{'(',_line} | Rest]) ->
{T, Rest2} = parse_tuple(Rest),
{gmb_fate_data:make_tuple(list_to_tuple(T)), Rest2};
parse_value([{bits,_line, Bits} | Rest]) ->
{gmb_fate_data:make_bits(Bits), Rest};
parse_value([{start_variant,_line}|_] = Tokens) ->
{Arities, Tag, Values, Rest} = parse_variant(Tokens),
Variant = gmb_fate_data:make_variant(Arities, Tag, Values),
{Variant, Rest};
parse_value([{string,_line, String} | Rest]) ->
{gmb_fate_data:make_string(String), Rest};
parse_value([{object,_line, {address, Address}} | Rest]) ->
{gmb_fate_data:make_address(Address), Rest};
parse_value([{object,_line, {contract, Address}} | Rest]) ->
{gmb_fate_data:make_contract(Address), Rest};
parse_value([{object,_line, {oracle, Address}} | Rest]) ->
{gmb_fate_data:make_oracle(Address), Rest};
parse_value([{object,_line, {oracle_query, Address}} | Rest]) ->
{gmb_fate_data:make_oracle_query(Address), Rest};
parse_value([{object,_line, {channel, Address}} | Rest]) ->
{gmb_fate_data:make_channel(Address), Rest};
parse_value([{hash,_line, Hash} | Rest]) ->
{gmb_fate_data:make_hash(Hash), Rest};
parse_value([{signature,_line, Hash} | Rest]) ->
{gmb_fate_data:make_signature(Hash), Rest};
parse_value([{typerep,_line} | Rest]) ->
to_type(Rest).
to_fun_def([{id, _, Name}, {'(', _} | Rest]) ->
{ArgsType, [{'to', _} | Rest2]} = to_arg_types(Rest),
{RetType, Rest3} = to_type(Rest2),
{{Name, ArgsType, RetType}, Rest3}.
to_arg_types([{')', _} | Rest]) -> {[], Rest};
to_arg_types(Tokens) ->
case to_type(Tokens) of
{Type, [{',', _} | Rest]} ->
{MoreTypes, Rest2} = to_arg_types(Rest),
{[Type|MoreTypes], Rest2};
{Type, [{')', _} | Rest]} ->
{[Type], Rest}
end.
%% Type handling
to_type([{id, _, "integer"} | Rest]) -> {integer, Rest};
to_type([{id, _, "boolean"} | Rest]) -> {boolean, Rest};
to_type([{id, _, "string"} | Rest]) -> {string, Rest};
to_type([{id, _, "address"} | Rest]) -> {address, Rest};
to_type([{id, _, "contract"} | Rest]) -> {contract, Rest};
to_type([{id, _, "oracle"} | Rest]) -> {oracle, Rest};
to_type([{id, _, "oracle_query"} | Rest]) -> {oracle_query, Rest};
to_type([{id, _, "name"} | Rest]) -> {name, Rest};
to_type([{id, _, "channel"} | Rest]) -> {channel, Rest};
to_type([{id, _, "hash"} | Rest]) -> {hash, Rest};
to_type([{id, _, "signature"} | Rest]) -> {signature, Rest};
to_type([{id, _, "bits"} | Rest]) -> {bits, Rest};
to_type([{'{', _}, {id, _, "list"}, {',', _} | Rest]) ->
%% TODO: Error handling
{ListType, [{'}', _}| Rest2]} = to_type(Rest),
{{list, ListType}, Rest2};
to_type([{'{', _}, {id, _, "tuple"}, {',', _}, {'[', _} | Rest]) ->
%% TODO: Error handling
{ElementTypes, [{'}', _}| Rest2]} = to_list_of_types(Rest),
{{tuple, ElementTypes}, Rest2};
to_type([{'{', _}, {id, _, "map"}, {',', _} | Rest]) ->
%% TODO: Error handling
{KeyType, [{',', _}| Rest2]} = to_type(Rest),
{ValueType, [{'}', _}| Rest3]} = to_type(Rest2),
{{map, KeyType, ValueType}, Rest3};
to_type([{'{', _}, {id, _, "bytes"}, {',', _}, {int, _, Size}, {'}', _} | Rest]) ->
%% TODO: Error handling
{{bytes, Size}, Rest};
to_type([{'{', _}
, {id, _, "variant"}
, {',', _}
, {'[', _}
| Rest]) ->
{ElementTypes, [{'}', _}| Rest2]} = to_list_of_types(Rest),
{{variant, ElementTypes}, Rest2}.
to_list_of_types([{']', _} | Rest]) -> {[], Rest};
to_list_of_types(Tokens) ->
case to_type(Tokens) of
{Type, [{',', _} | Rest]} ->
{MoreTypes, Rest2} = to_list_of_types(Rest),
{[Type|MoreTypes], Rest2};
{Type, [{']', _} | Rest]} ->
{[Type], Rest}
end.
%% -------------------------------------------------------------------
%% Helper functions
%% -------------------------------------------------------------------
%% State handling
insert_fun(none, [], Env) -> Env;
insert_fun({NameString, ArgType, RetType}, Code, #{ fate_code := FateCode
, functions := Funs} = Env) ->
Name = list_to_binary(NameString),
{FateCode1, Id} = gmb_fate_code:insert_symbol(Name, FateCode),
BodyByteCode = gmb_fate_code:serialize_code(lists:reverse(Code)),
SigByteCode = gmb_fate_code:serialize_signature({ArgType, RetType}),
FunByteCode = [?FUNCTION, Id, gmb_fate_encoding:serialize(0), SigByteCode, BodyByteCode],
Env#{ functions => Funs#{ Id => FunByteCode }
, fate_code => FateCode1}.
insert_symbol(Name, #{ fate_code := FateCode } = Env) ->
{FateCode1, Id} = gmb_fate_code:insert_symbol(Name, FateCode),
{ Env#{ fate_code => FateCode1 }
, Id}.
insert_annotation(comment, Line, Comment, #{ fate_code := FateCode } = Env) ->
FateCode1 = gmb_fate_code:insert_annotation(comment, Line, Comment, FateCode),
Env#{ fate_code => FateCode1}.
mk_hash(Id) ->
%% Use first 4 bytes of blake hash
{ok, <<A:8, B:8, C:8, D:8,_/binary>> } = eblake2:blake2b(?HASH_BYTES, list_to_binary(Id)),
<<A,B,C,D>>.
%% Handle annotations
get_comments(Annotations) ->
[ {Line, Comment} ||
{?FATE_TUPLE({?FATE_STRING_VALUE("comment"), Line}),
?FATE_STRING_VALUE(Comment)} <- maps:to_list(Annotations)].
%% Symbol table handling
lookup(Name, Symbols) ->
maps:get(Name, Symbols, Name).

View File

@ -1,448 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc
%%% ADT for fate byte code/fate code
%%% @end
%%%
%%%-------------------------------------------------------------------
-module(gmb_fate_code).
-vsn("3.4.1").
-export([ annotations/1
, deserialize/1
, functions/1
, insert_annotation/4
, insert_fun/5
, insert_symbol/2
, new/0
, serialize/1
, serialize/2
, serialize/3
, serialize_code/1
, serialize_signature/1
, strip_init_function/1
, symbol_identifier/1
, symbols/1
]).
-include("../include/gmb_fate_opcodes.hrl").
-include("../include/gmb_fate_data.hrl").
-export([ update_annotations/2
, update_functions/2
, update_symbols/2]).
-record(fcode, { functions = #{} :: map()
, symbols = #{} :: map()
, annotations = #{} :: map()
}).
-define(HASH_BYTES, 32).
-type fcode() :: #fcode{}.
-export_type([fcode/0]).
%%%===================================================================
%%% API
%%%===================================================================
new() ->
#fcode{}.
annotations(#fcode{ annotations = As }) ->
As.
functions(#fcode{ functions = Fs }) ->
Fs.
symbols(#fcode{ symbols = Ss}) ->
Ss.
update_annotations(#fcode{ annotations = As } = FCode, Anns) ->
FCode#fcode{ annotations = maps:merge(As, Anns) }.
update_functions(#fcode{ functions = Fs } = FCode, Funs) ->
FCode#fcode{ functions = maps:merge(Fs, Funs) }.
update_symbols(#fcode{ symbols = Ss } = FCode, Symbs) ->
FCode#fcode{ symbols = maps:merge(Ss, Symbs) }.
symbol_identifier(Bin) ->
%% First 4 bytes of blake hash
{ok, <<X:4/binary,_/binary>> } = eblake2:blake2b(?HASH_BYTES, Bin),
X.
insert_fun(Name, Attrs, {ArgType, RetType}, #{} = BBs, FCode) ->
{F1, ID} = insert_symbol(Name, FCode),
update_functions(F1, #{ID => {Attrs, {ArgType, RetType}, BBs}}).
insert_symbol(Name, #fcode{ symbols = Syms } = F) ->
ID = symbol_identifier(Name),
case maps:find(ID, Syms) of
{ok, Name} ->
{F, ID};
{ok, X} ->
error({two_symbols_with_same_hash, Name, X});
error ->
{update_symbols(F, #{ID => Name}), ID}
end.
insert_annotation(comment =_Type, Line, Comment, FCode) ->
Key = gmb_fate_data:make_tuple({gmb_fate_data:make_string("comment"), Line}),
Value = gmb_fate_data:make_string(Comment),
update_annotations(FCode, #{ Key => Value }).
strip_init_function(#fcode{ functions = Funs,
symbols = Syms } = FCode) ->
Funs1 = maps:remove(?FATE_INIT_ID, Funs),
Syms1 = maps:remove(?FATE_INIT_ID, Syms),
FCode#fcode{ functions = Funs1, symbols = Syms1 }.
%%%===================================================================
%%% Serialization
%%%===================================================================
serialize(#fcode{} = F) ->
serialize(F, []).
serialize(#fcode{} = F, Options) ->
sanity_check(F),
serialize(F, serialize_functions(F), Options).
serialize(#fcode{} = F, Functions, Options) ->
SymbolTable = serialize_symbol_table(F),
Annotatations = serialize_annotations(F),
ByteCode = << (gmser_rlp:encode(Functions))/binary,
(gmser_rlp:encode(SymbolTable))/binary,
(gmser_rlp:encode(Annotatations))/binary
>>,
case proplists:lookup(pp_hex_string, Options) of
{pp_hex_string, true} ->
io:format("Code: ~s~n",[to_hexstring(Functions)]);
none ->
ok
end,
ByteCode.
to_hexstring(ByteList) ->
"0x" ++ lists:flatten(
[io_lib:format("~2.16.0b", [X])
|| X <- ByteList]).
serialize_functions(#fcode{ functions = Functions }) ->
%% Sort the functions on name to get a canonical serialisation.
iolist_to_binary(
lists:foldr(fun({Id, {Attrs, Sig, C}}, Acc) ->
[[?FUNCTION, Id, serialize_attributes(Attrs), serialize_signature(Sig), serialize_bbs(C)] | Acc]
end, [], lists:sort(maps:to_list(Functions)))).
serialize_attributes(Attrs) ->
AttrVal = lists:sum([ attr_value(Attr) || Attr <- Attrs ]),
gmb_fate_encoding:serialize(?MAKE_FATE_INTEGER(AttrVal)).
attr_value(private) -> 1;
attr_value(payable) -> 2.
serialize_signature({Args, RetType}) ->
[gmb_fate_encoding:serialize_type({tuple, Args}) |
gmb_fate_encoding:serialize_type(RetType)].
serialize_symbol_table(#fcode{ symbols = Symbols }) ->
gmb_fate_encoding:serialize(gmb_fate_data:make_map(Symbols)).
serialize_annotations(#fcode{ annotations = Annotations }) ->
gmb_fate_encoding:serialize(gmb_fate_data:make_map(Annotations)).
serialize_bbs(#{} = BBs) ->
serialize_bbs(BBs, 0, []).
serialize_bbs(BBs, N, Acc) ->
case maps:get(N, BBs, none) of
none -> lists:reverse(Acc);
BB -> serialize_bbs(BBs, N + 1, [serialize_bb(BB, [])|Acc])
end.
serialize_bb([Op], Acc) ->
lists:reverse([serialize_op(Op)|Acc]);
serialize_bb([Op|Rest], Acc) ->
serialize_bb(Rest, [serialize_op(Op)|Acc]).
serialize_op(Op) ->
[Mnemonic|Args] =
case is_tuple(Op) of
true -> tuple_to_list(Op);
false -> [Op]
end,
[gmb_fate_opcodes:m_to_op(Mnemonic) | serialize_code(Args)].
sanity_check(#fcode{ functions = Funs }) ->
_ = [ case Def of
{_, _, BBs} when byte_size(Id) == 4 -> sanity_check_bbs(BBs);
_ -> error({illegal_function_id, Id})
end || {Id, Def} <- maps:to_list(Funs) ],
ok.
sanity_check_bbs(#{} = BBs) ->
sanity_check_bbs(BBs, 0).
sanity_check_bbs(BBs, N) ->
case maps:get(N, BBs, none) of
none ->
%% Assert that the BBs were contiguous
case maps:size(BBs) =:= N of
true -> ok;
false -> error({not_contiguous_labels, lists:sort(maps:keys(BBs))})
end;
[] ->
error({empty_code_block, N});
BB ->
sanity_check_bb(BB),
sanity_check_bbs(BBs, N + 1)
end.
sanity_check_bb([Op]) ->
sanity_check_op(true, Op);
sanity_check_bb([Op|Rest]) ->
sanity_check_op(false, Op),
sanity_check_bb(Rest).
sanity_check_op(IsLast, Op) ->
[Mnemonic|Args] =
case is_tuple(Op) of
true -> tuple_to_list(Op);
false -> [Op]
end,
safe_sanity_check(IsLast, gmb_fate_opcodes:m_to_op(Mnemonic), Args).
safe_sanity_check(IsLast, Op, Args) ->
case length(Args) == gmb_fate_opcodes:args(Op) of
true ->
case IsLast == gmb_fate_opcodes:end_bb(Op) of
true -> ok;
false -> error({wrong_opcode_in_bb, Op})
end;
false -> error({wrong_nr_args_opcode, Op})
end.
%% Argument encoding
%% Argument Specification Byte
%% bitpos: 6 4 2 0
%% xx xx xx xx
%% Arg3 Arg2 Arg1 Arg0
%% For 5-8 args another Argument Spec Byte is used
%% bitpos: 6 4 2 0 | 6 4 2 0
%% xx xx xx xx | xx xx xx xx
%% Arg7 Arg6 Arg5 Arg4 | Arg3 Arg2 Arg1 Arg0
%% Bit pattern
%% 00 : stack/unused (depending on instruction)
%% 01 : argN
%% 10 : varN
%% 11 : immediate
serialize_code([{_,_}|_] = List ) ->
%% Take out the full argument list.
{Args, Rest} = lists:splitwith(fun({_, _}) -> true; (_) -> false end, List),
%% Create the appropriate number of modifier bytes.
Mods = << <<(modifier_bits(Type, X)):2>> || {Type, X} <- pad_args(lists:reverse(Args)) >>,
case Mods of
<<M1:8, M2:8>> ->
[M1, M2 | [serialize_data(Type, Arg) || {Type, Arg} <- Args, Type =/= stack]] ++
serialize_code(Rest);
<<M1:8>> ->
[M1 | [serialize_data(Type, Arg) || {Type, Arg} <- Args, Type =/= stack]] ++
serialize_code(Rest)
end;
serialize_code([Op|Rest]) ->
[Op|serialize_code(Rest)];
serialize_code([]) ->
[].
pad_args(List) ->
case length(List) of
0 -> List;
N when N =< 4 ->
lists:duplicate(4 - N, {stack, 0}) ++ List;
N when N =< 8 ->
lists:duplicate(8 - N, {stack, 0}) ++ List
end.
serialize_data(_, Data) ->
gmb_fate_encoding:serialize(Data).
%% 00 : stack/unused (depending on instruction)
%% 01 : argN
%% 10 : varN
%% 11 : immediate
modifier_bits(immediate, _) -> 2#11;
modifier_bits(var, _) -> 2#10;
modifier_bits(arg, _) -> 2#01;
modifier_bits(stack, 0) -> 2#00;
modifier_bits(Type, X) -> error({illegal_argument, Type, X}).
bits_to_modifier(2#11) -> immediate;
bits_to_modifier(2#10) -> var;
bits_to_modifier(2#01) -> arg;
bits_to_modifier(2#00) -> stack.
%%%===================================================================
%%% Deserialization
%%%===================================================================
deserialize(Bytes) ->
{ByteCode, Rest1} = gmser_rlp:decode_one(Bytes),
{SymbolTable, Rest2} = gmser_rlp:decode_one(Rest1),
{Annotations, <<>>} = gmser_rlp:decode_one(Rest2),
Env = #{ function => none
, bb => 0
, current_bb_code => []
, functions => #{}
, code => #{}
},
Fcode =
#fcode{ functions = deserialize_functions(ByteCode, Env)
, annotations = deserialize_annotations(Annotations)
, symbols = deserialize_symbols(SymbolTable)
},
sanity_check(Fcode),
Fcode.
deserialize_functions(<<?FUNCTION:8, A, B, C, D, Rest/binary>>,
#{ function := none
, bb := 0
, current_bb_code := []
} = Env) ->
{Attrs, Rest2} = deserialize_attributes(Rest),
{Sig, Rest3} = deserialize_signature(Rest2),
Env2 = Env#{function => {<<A,B,C,D>>, Attrs, Sig}},
deserialize_functions(Rest3, Env2);
deserialize_functions(<<?FUNCTION:8, A, B, C, D, Rest/binary>>,
#{ function := {F, Attrs, Sig}
, bb := BB
, current_bb_code := Code
, code := Program
, functions := Funs} = Env) ->
{NewAttrs, Rest2} = deserialize_attributes(Rest),
{NewSig, Rest3} = deserialize_signature(Rest2),
case Code of
[] ->
Env2 = Env#{ bb => 0
, current_bb_code => []
, function => {<<A,B,C,D>>, NewAttrs, NewSig}
, code => #{}
, functions => Funs#{F => {Attrs, Sig, Program}}},
deserialize_functions(Rest3, Env2);
_ ->
Env2 = Env#{ bb => 0
, current_bb_code => []
, function => {<<A,B,C,D>>, NewAttrs, NewSig}
, code => #{}
, functions =>
Funs#{F => {Attrs, Sig,
Program#{ BB => lists:reverse(Code)}}}},
deserialize_functions(Rest3, Env2)
end;
deserialize_functions(<<_Op:8, _Rest/binary>>,
#{ function := none }) ->
error({code_without_function});
deserialize_functions(<<Op:8, Rest/binary>>,
#{ bb := BB
, current_bb_code := Code
, code := Program} = Env) ->
{Rest2, OpCode} = deserialize_op(Op, Rest, Code),
case gmb_fate_opcodes:end_bb(Op) of
true ->
deserialize_functions(Rest2, Env#{ bb => BB+1
, current_bb_code => []
, code => Program#{BB =>
lists:reverse(OpCode)}});
false ->
deserialize_functions(Rest2, Env#{ current_bb_code => OpCode})
end;
deserialize_functions(<<>>, #{ function := none
, functions := Funs}) ->
Funs;
deserialize_functions(<<>>, #{ function := {F, Attrs, Sig}
, bb := BB
, current_bb_code := Code
, code := Program
, functions := Funs}) ->
FunctionCode =
case Code of
[] -> Program;
_ -> Program#{ BB => lists:reverse(Code)}
end,
Funs#{F => {Attrs, Sig, FunctionCode}}.
deserialize_op(Op, Rest, Code) ->
OpName = gmb_fate_opcodes:mnemonic(Op),
case gmb_fate_opcodes:args(Op) of
0 ->
{Rest, [OpName | Code]};
N ->
{Args, Rest1} = deserialize_n_args(N, Rest),
{Rest1, [list_to_tuple([OpName|Args])|Code]}
end.
deserialize_n_args(N, <<M3:2, M2:2, M1:2, M0:2, Rest/binary>>) when N =< 4 ->
{ArgMods, Zeros} = lists:split(N, [M0, M1, M2, M3]),
assert_zero(Zeros),
lists:mapfoldl(fun(M, Acc) ->
case bits_to_modifier(M) of
stack ->
{{stack, 0}, Acc};
Modifier ->
{Arg, Acc2} = gmb_fate_encoding:deserialize_one(Acc),
{{Modifier, Arg}, Acc2}
end
end, Rest, ArgMods);
deserialize_n_args(N, <<M7:2, M6:2, M5:2, M4:2, M3:2, M2:2, M1:2, M0:2,
Rest/binary>>) when N =< 8 ->
{ArgMods, Zeros} = lists:split(N, [M0, M1, M2, M3, M4, M5, M6, M7]),
assert_zero(Zeros),
lists:mapfoldl(fun(M, Acc) ->
case bits_to_modifier(M) of
stack ->
{{stack, 0}, Acc};
Modifier ->
{Arg, Acc2} = gmb_fate_encoding:deserialize_one(Acc),
{{Modifier, Arg}, Acc2}
end
end, Rest, ArgMods).
deserialize_attributes(Binary) ->
{AttrVal, Rest} = gmb_fate_encoding:deserialize_one(Binary),
Attrs = [ attr(AVal) || AVal <- attr_vals(1, AttrVal) ],
{lists:sort(Attrs), Rest}.
attr_vals(_, 0) -> [];
attr_vals(X, N) when N rem 2 == 0 -> attr_vals(X + 1, N div 2);
attr_vals(X, N) -> [X | attr_vals(X + 1, N div 2)].
attr(1) -> private;
attr(2) -> payable.
deserialize_signature(Binary) ->
{{tuple, Args}, Rest} = gmb_fate_encoding:deserialize_type(Binary),
{RetType, Rest2} = gmb_fate_encoding:deserialize_type(Rest),
{{Args, RetType}, Rest2}.
deserialize_symbols(Table) ->
?FATE_MAP_VALUE(SymbolTable) = gmb_fate_encoding:deserialize(Table),
SymbolTable.
deserialize_annotations(AnnotationsBin) ->
?FATE_MAP_VALUE(Annotations) = gmb_fate_encoding:deserialize(AnnotationsBin),
Annotations.
assert_zero([]) ->
true;
assert_zero([0|Rest]) ->
assert_zero(Rest);
assert_zero([_|_]) ->
error(argument_defined_outside_range).

View File

@ -1,396 +0,0 @@
%% FATE data representation.
%%
-include("gmb_fate_data.hrl").
-module(gmb_fate_data).
-vsn("3.4.1").
-type fate_integer() :: ?FATE_INTEGER_T.
-type fate_boolean() :: ?FATE_BOOLEAN_T.
-type fate_nil() :: ?FATE_NIL_T.
-type fate_list() :: ?FATE_LIST_T.
-type fate_unit() :: ?FATE_UNIT_T.
-type fate_map() :: ?FATE_MAP_T.
-type fate_store_map() :: ?FATE_STORE_MAP_T.
-type fate_string() :: ?FATE_STRING_T.
-type fate_address() :: ?FATE_ADDRESS_T.
-type fate_hash() :: ?FATE_BYTES_T(32).
-type fate_signature() :: ?FATE_BYTES_T(64).
-type fate_contract() :: ?FATE_CONTRACT_T.
-type fate_oracle() :: ?FATE_ORACLE_T.
-type fate_oracle_q() :: ?FATE_ORACLE_Q_T.
-type fate_channel() :: ?FATE_CHANNEL_T.
-type fate_variant() :: ?FATE_VARIANT_T.
-type fate_tuple() :: ?FATE_TUPLE_T.
-type fate_bits() :: ?FATE_BITS_T.
-type fate_typerep() :: ?FATE_TYPEREP_T.
-type fate_contract_bytearray() :: ?FATE_CONTRACT_BYTEARRAY_T.
-type fate_type_type() :: integer
| boolean
| {list, fate_type_type()}
| {map, fate_type_type(), fate_type_type()}
| {tuple, [fate_type_type()]}
| address
| hash
| signature
| contract
| oracle
| oracle_query
| channel
| bits
| string
| {variant, [fate_type_type()]}
| contract_bytearray.
-type fate_type() ::
fate_boolean()
| fate_integer()
| fate_nil()
| fate_list()
| fate_unit()
| fate_tuple()
| fate_string()
| fate_address()
| fate_hash()
| fate_signature()
| fate_contract()
| fate_oracle()
| fate_oracle_q()
| fate_channel()
| fate_variant()
| fate_map()
| fate_bits()
| fate_typerep()
| fate_contract_bytearray().
-export_type([fate_type/0
, fate_boolean/0
, fate_integer/0
, fate_nil/0
, fate_list/0
, fate_unit/0
, fate_tuple/0
, fate_string/0
, fate_address/0
, fate_hash/0
, fate_signature/0
, fate_contract/0
, fate_oracle/0
, fate_channel/0
, fate_variant/0
, fate_map/0
, fate_store_map/0
, fate_bits/0
, fate_type_type/0
]).
-export([ make_integer/1
, make_boolean/1
, make_list/1
, make_variant/3
, make_tuple/1
, make_string/1
, make_map/1
, make_store_map/1
, make_store_map/2
, make_address/1
, make_bytes/1
, make_hash/1
, make_signature/1
, make_contract/1
, make_oracle/1
, make_oracle_query/1
, make_channel/1
, make_bits/1
, make_unit/0
, make_typerep/1
, make_contract_bytearray/1
]).
-export([
elt/2
, lt/2
, format/1
, ordinal/1]).
make_boolean(true) -> ?FATE_TRUE;
make_boolean(false) -> ?FATE_FALSE.
make_list([]) -> ?FATE_NIL;
make_list(L) -> ?MAKE_FATE_LIST(L).
make_unit() -> ?FATE_UNIT.
make_tuple(T) -> ?FATE_TUPLE(T).
make_map(M) -> ?MAKE_FATE_MAP(M).
make_store_map(Id) -> make_store_map(#{}, Id).
make_store_map(Cache, Id) -> ?FATE_STORE_MAP(Cache, Id).
make_address(X) -> ?FATE_ADDRESS(X).
make_bytes(X) -> ?FATE_BYTES(X).
make_hash(X) -> make_bytes(X).
make_signature(X) -> make_bytes(X).
make_contract(X) -> ?FATE_CONTRACT(X).
make_oracle(X) -> ?FATE_ORACLE(X).
make_oracle_query(X) -> ?FATE_ORACLE_Q(X).
make_channel(X) -> ?FATE_CHANNEL(X).
make_integer(I) when is_integer(I) -> ?MAKE_FATE_INTEGER(I).
make_bits(I) when is_integer(I) -> ?FATE_BITS(I).
make_string(S) when is_list(S) ->
?FATE_STRING(iolist_to_binary(S));
make_string(S) when is_binary(S) -> ?FATE_STRING(S).
make_typerep(T) -> ?FATE_TYPEREP(T).
make_contract_bytearray(B) -> ?FATE_CONTRACT_BYTEARRAY(B).
%% Tag points to the selected variant (zero based)
%% The arity of this variant is read from the list of provided arities
%% and should match the size of the given tuple.
make_variant(Arities, Tag, Values) ->
Arities = [A || A <- Arities, is_integer(A), A < 256],
Size = length(Arities),
if is_integer(Tag)
, 0 =< Tag
, Tag < Size
, is_tuple(Values) ->
Arity = lists:nth(Tag+1, Arities),
if size(Values) =:= Arity ->
?FATE_VARIANT(Arities, Tag, Values)
end
end.
-spec format(fate_type()) -> iolist().
format(I) when ?IS_FATE_INTEGER(I) -> integer_to_list(?MAKE_FATE_INTEGER(I));
format(?FATE_TRUE) -> "true";
format(?FATE_FALSE) -> "false";
format(?FATE_NIL) -> "[]";
format(L) when ?IS_FATE_LIST(L) -> format_list(?FATE_LIST_VALUE(L));
format(?FATE_UNIT) -> "()";
format(?FATE_TUPLE(T)) ->
["( ", lists:join(", ", [ format(E) || E <- erlang:tuple_to_list(T)]), " )"];
format(S) when ?IS_FATE_STRING(S) -> ["\"", S, "\""];
format(?FATE_BITS(B)) when B >= 0 ->
["<", format_bits(B, "") , ">"];
format(?FATE_BITS(B)) when B < 0 ->
["!< ", format_nbits(-B-1, "") , " >"];
format(?FATE_VARIANT(Arities, Tag, T)) ->
["(| ",
lists:join("| ",
[format_arities(Arities),
integer_to_list(Tag) |
[format(make_tuple(T))]]),
" |)"];
format(M) when ?IS_FATE_MAP(M) ->
["{ ", format_kvs(maps:to_list(?FATE_MAP_VALUE(M))), " }"];
format(?FATE_BYTES(X)) -> ["#", base64:encode(X)];
format(?FATE_ADDRESS(X)) ->
["@", gmser_api_encoder:encode(account_pubkey, X)];
format(?FATE_CONTRACT(X)) ->
["@", gmser_api_encoder:encode(contract_pubkey, X)];
format(?FATE_ORACLE(X)) ->
["@", gmser_api_encoder:encode(oracle_pubkey, X)];
format(?FATE_ORACLE_Q(X)) ->
["@", gmser_api_encoder:encode(oracle_query_id, X)];
format(?FATE_CHANNEL(X)) ->
["@", gmser_api_encoder:encode(channel, X)];
format(?FATE_TYPEREP(X)) ->
["'", io_lib:format("~p", [X])];
format(?FATE_CONTRACT_BYTEARRAY(B)) ->
["@", gmser_api_encoder:encode(contract_bytearray, B)];
format(V) -> exit({not_a_fate_type, V}).
format_bits(0, Acc) -> Acc;
format_bits(N, Acc) ->
Bit = $0 + (N band 1),
format_bits(N bsr 1, [Bit|Acc]).
format_nbits(0, Acc) -> Acc;
format_nbits(N, Acc) ->
Bit = $1 - (N band 1),
format_nbits(N bsr 1, [Bit|Acc]).
format_arities(Arities) ->
["[ ", lists:join(", ", [integer_to_list(E) || E <- Arities]), " ]"].
format_list(List) ->
["[ ", lists:join(", ", [format(E) || E <- List]), " ]"].
format_kvs(List) ->
lists:join(", ", [ [format(K), " => ", format(V)] || {K, V} <- List]).
%% Total order of FATE terms.
%% Integers < Booleans < Address < Channel < Contract < Oracle
%% < Hash < Signature < Bits < String < Tuple < Map < List < Variant
%% < Oracle query < FATE code
-define(ORD_INTEGER , 0).
-define(ORD_BOOLEAN , 1).
-define(ORD_ADDRESS , 2).
-define(ORD_CHANNEL , 3).
-define(ORD_CONTRACT , 4).
-define(ORD_ORACLE , 5).
-define(ORD_BYTES , 6).
-define(ORD_BITS , 7).
-define(ORD_STRING , 8).
-define(ORD_TUPLE , 9).
-define(ORD_MAP , 10).
-define(ORD_LIST , 11).
-define(ORD_VARIANT , 12).
-define(ORD_ORACLE_Q , 13).
-define(ORD_CONTRACT_BYTEARRAY , 14).
-spec ordinal(fate_type()) -> integer().
ordinal(T) when ?IS_FATE_INTEGER(T) -> ?ORD_INTEGER;
ordinal(T) when ?IS_FATE_BOOLEAN(T) -> ?ORD_BOOLEAN;
ordinal(T) when ?IS_FATE_ADDRESS(T) -> ?ORD_ADDRESS;
ordinal(T) when ?IS_FATE_CHANNEL(T) -> ?ORD_CHANNEL;
ordinal(T) when ?IS_FATE_CONTRACT(T) -> ?ORD_CONTRACT;
ordinal(T) when ?IS_FATE_ORACLE(T) -> ?ORD_ORACLE;
ordinal(T) when ?IS_FATE_BYTES(T) -> ?ORD_BYTES;
ordinal(T) when ?IS_FATE_BITS(T) -> ?ORD_BITS;
ordinal(T) when ?IS_FATE_STRING(T) -> ?ORD_STRING;
ordinal(T) when ?IS_FATE_TUPLE(T) -> ?ORD_TUPLE;
ordinal(T) when ?IS_FATE_MAP(T) -> ?ORD_MAP;
ordinal(T) when ?IS_FATE_LIST(T) -> ?ORD_LIST;
ordinal(T) when ?IS_FATE_VARIANT(T) -> ?ORD_VARIANT;
ordinal(T) when ?IS_FATE_ORACLE_Q(T) -> ?ORD_ORACLE_Q;
ordinal(T) when ?IS_FATE_CONTRACT_BYTEARRAY(T) -> ?ORD_CONTRACT_BYTEARRAY.
-spec lt(fate_type(), fate_type()) -> boolean().
lt(A, B) ->
O1 = ordinal(A),
O2 = ordinal(B),
if O1 == O2 -> lt(O1, A, B);
true -> O1 < O2
end.
%% Integers are ordered as usual.
lt(?ORD_INTEGER, A, B) when ?IS_FATE_INTEGER(A), ?IS_FATE_INTEGER(B) ->
?FATE_INTEGER_VALUE(A) < ?FATE_INTEGER_VALUE(B);
%% false is smaller than true (true also for erlang booleans).
lt(?ORD_BOOLEAN, A, B) when ?IS_FATE_BOOLEAN(A), ?IS_FATE_BOOLEAN(B) ->
?FATE_BOOLEAN_VALUE(A) < ?FATE_BOOLEAN_VALUE(B);
lt(?ORD_BITS, A, B) when ?IS_FATE_BITS(A), ?IS_FATE_BITS(B) ->
BitsA = ?FATE_BITS_VALUE(A),
BitsB = ?FATE_BITS_VALUE(B),
if BitsA < 0 ->
if BitsB < 0 -> BitsA < BitsB;
true -> false
end;
BitsB < 0 ->
true;
true -> BitsA < BitsB
end;
lt(?ORD_TUPLE, ?FATE_TUPLE(A), ?FATE_TUPLE(B)) ->
SizeA = tuple_size(A),
SizeB = tuple_size(B),
case SizeA - SizeB of
0 -> tuple_elements_lt(0, A, B, SizeA);
N -> N < 0
end;
lt(?ORD_MAP, ?FATE_MAP_VALUE(A), ?FATE_MAP_VALUE(B)) ->
SizeA = maps:size(A),
SizeB = maps:size(B),
case SizeA - SizeB of
0 -> maps_lt(A, B);
N -> N < 0
end;
lt(?ORD_LIST, ?FATE_LIST_VALUE(_), ?FATE_LIST_VALUE([])) -> false;
lt(?ORD_LIST, ?FATE_LIST_VALUE([]), ?FATE_LIST_VALUE(_)) -> true;
lt(?ORD_LIST, ?FATE_LIST_VALUE([A|RA]), ?FATE_LIST_VALUE([B|RB])) ->
if A == B -> lt(RA, RB);
true -> lt(A, B)
end;
lt(?ORD_VARIANT, ?FATE_VARIANT(AritiesA, TagA, TA),
?FATE_VARIANT(AritiesB, TagB, TB)) ->
if length(AritiesA) < length(AritiesB) -> true;
length(AritiesA) > length(AritiesB) -> false;
true ->
% Compare element by element consistent with Erlang compare
if AritiesA < AritiesB -> true;
AritiesA > AritiesB -> false;
true ->
if TagA < TagB -> true;
TagA > TagB -> false;
true -> lt(make_tuple(TA), make_tuple(TB))
end
end
end;
lt(?ORD_ADDRESS, ?FATE_ADDRESS(A), ?FATE_ADDRESS(B)) ->
A < B;
lt(?ORD_CHANNEL, ?FATE_CHANNEL(A), ?FATE_CHANNEL(B)) ->
A < B;
lt(?ORD_CONTRACT, ?FATE_CONTRACT(A), ?FATE_CONTRACT(B)) ->
A < B;
lt(?ORD_ORACLE, ?FATE_ORACLE(A), ?FATE_ORACLE(B)) ->
A < B;
lt(?ORD_ORACLE_Q, ?FATE_ORACLE_Q(A), ?FATE_ORACLE_Q(B)) ->
A < B;
lt(?ORD_STRING, ?FATE_STRING(A), ?FATE_STRING(B)) ->
compare_bytes(A, B);
lt(?ORD_BYTES, ?FATE_BYTES(A), ?FATE_BYTES(B)) ->
compare_bytes(A, B);
lt(?ORD_CONTRACT_BYTEARRAY, ?FATE_CONTRACT_BYTEARRAY(A), ?FATE_CONTRACT_BYTEARRAY(B)) ->
compare_bytes(A, B).
% Shorter comes first
% On same length compare by first different bit
compare_bytes(A, B) ->
SizeA = byte_size(A),
SizeB = byte_size(B),
case SizeA - SizeB of
0 -> A < B;
N -> N < 0
end.
tuple_elements_lt(N,_A,_B, N) ->
false;
tuple_elements_lt(N, A, B, Size) ->
E = N + 1,
EA = element(E, A),
EB = element(E, B),
if EA =:= EB -> tuple_elements_lt(E, A, B, Size);
true -> lt(EA, EB)
end.
maps_lt(A, B) ->
IA = maps_iterator(A),
IB = maps_iterator(B),
maps_i_lt(IA, IB).
maps_i_lt(IA, IB) ->
case {maps_next(IA), maps_next(IB)} of
{none, none} -> false;
{_, none} -> false;
{none, _} -> true;
{{KA1, VA1, IA2}, {KB1, VB1, IB2}} ->
case lt(KA1, KB1) of
true -> true;
false ->
case lt(KB1, KA1) of
true -> false;
false ->
case lt(VA1, VB1) of
true -> true;
false ->
case lt(VB1, VA1) of
true -> false;
false ->
maps_i_lt(IA2, IB2)
end
end
end
end
end.
maps_iterator(M) -> lists:sort(fun ({K1,_}, {K2,_}) -> lt(K1, K2) end, maps:to_list(M)).
maps_next([]) -> none;
maps_next([{K,V}|Rest]) -> {K, V, Rest}.
-spec elt(fate_type(), fate_type()) -> boolean().
elt(A, A) -> true;
elt(A, B) ->
R = lt(A, B),
R.

View File

@ -1,519 +0,0 @@
%% Fate data (and instruction) serialization.
%%
%% Assuming
%% S is seralize/1 (fate_type() -> binary())
%% D is deserialize/1 (binary) -> fate_type())
%% V, V1, V2 are of the type fate_type()
%% B is of the type binary()
%% Then
%% The FATE serialization has to fullfill the following properties:
%% * For each value (V) in FATE there has to be a bytecode sequence (B)
%% representing that value.
%% * A valid byte sequence has to be deserializable to a FATE value.
%% * A valid byte sequence must not contain any trailing bytes.
%% * A serialization is a sequence of 8-bit bytes.
%% The serialization function (S) should fullfill the following:
%% * A valid FATE value should be serialized to a byte sequence.
%% * Any other argument, not representing a valid FATE value should
%% throw an exception
%% The deserialization function (D) should fullfill the following:
%% * A valid byte sequence should be deserialized to a valid FATE value.
%% * Any other argument, not representing a valid byte sequence should
%% throw an exception
%% The following equalities should hold:
%% * D(S(V)) == V
%% * if V1 == V2 then S(V1) == S(V2)
%%
%%
%% History
%% * First draft of FATE serialization encoding/decoding.
%% Initial experiment with tags
%% * Second draft
%% * FATE data is now defined in gmfa_data.erl
%% * Third draft
%% * Added Bit strings
%%
%% TODO:
%% * Make the code production ready.
%% (add tests, document exported functions).
%% * Handle instructions.
%%
%% ------------------------------------------------------------------------
-module(gmb_fate_encoding).
-vsn("3.4.1").
-export([ deserialize/1
, deserialize_one/1
, deserialize_type/1
, serialize/1
, serialize_type/1
]).
-ifdef(EQC).
-export([sort/1]).
-endif.
-include("gmb_fate_data.hrl").
%% Definition of tag scheme.
%% This has to follow the protocol specification.
-define(SMALL_INT , 2#0). %% sxxxxxx 0 - 6 bit integer with sign bit
%% 1 Set below
-define(LONG_STRING , 2#00000001). %% 000000 01 | RLP encoded array - when size >= 64
-define(SHORT_STRING , 2#01). %% xxxxxx 01 | [bytes] - when 0 < xxxxxx:size < 64
%% 11 Set below
-define(SHORT_LIST , 2#0011). %% xxxx 0011 | [encoded elements] when 0 < length < 16
%% 0111 Set below
-define(TYPE_INTEGER , 2#00000111). %% 0000 0111 - Integer typedef
-define(TYPE_BOOLEAN , 2#00010111). %% 0001 0111 - Boolean typedef
-define(TYPE_LIST , 2#00100111). %% 0010 0111 | Type
-define(TYPE_TUPLE , 2#00110111). %% 0011 0111 | Size | [Element Types]
-define(TYPE_OBJECT , 2#01000111). %% 0100 0111 | ObjectType
-define(TYPE_BITS , 2#01010111). %% 0101 0111 - Bits typedef
-define(TYPE_MAP , 2#01100111). %% 0110 0111 | Type | Type
-define(TYPE_STRING , 2#01110111). %% 0111 0111 - string typedef
-define(TYPE_VARIANT , 2#10000111). %% 1000 0111 | [Arities] | [Type]
-define(TYPE_BYTES , 2#10010111). %% 1001 0111 - Bytes typedef
-define(TYPE_CONTRACT_BYTEARRAY,2#10100111). %% 1010 0111 - Fate code typedef
%% 1011 0111
%% 1100 0111
%% 1101 0111
-define(TYPE_VAR , 2#11100111). %% 1110 0111 | Id when 0 =< Id < 256 (type variable)
-define(TYPE_ANY , 2#11110111). %% 1111 0111 - Any typedef
-define(LONG_TUPLE , 2#00001011). %% 0000 1011 | RLP encoded (size - 16) | [encoded elements],
-define(SHORT_TUPLE , 2#1011). %% xxxx 1011 | [encoded elements] when 0 < size < 16
%% 1111 Set below
-define(LONG_LIST , 2#00011111). %% 0001 1111 | RLP encoded (length - 16) | [encoded lements]
-define(MAP , 2#00101111). %% 0010 1111 | RLP encoded size | [encoded key, encoded value]
-define(EMPTY_TUPLE , 2#00111111). %% 0011 1111
-define(POS_BITS , 2#01001111). %% 0100 1111 | RLP encoded integer (to be interpreted as bitfield)
-define(EMPTY_STRING , 2#01011111). %% 0101 1111
-define(POS_BIG_INT , 2#01101111). %% 0110 1111 | RLP encoded (integer - 64)
-define(FALSE , 2#01111111). %% 0111 1111
-define(
CONTRACT_BYTEARRAY, 2#10001111). %% 1000 1111
-define(OBJECT , 2#10011111). %% 1001 1111 | ObjectType | RLP encoded Array
-define(VARIANT , 2#10101111). %% 1010 1111 | [encoded arities] | encoded tag | [encoded values]
-define(MAP_ID , 2#10111111). %% 1011 1111 | RLP encoded integer (store map id)
-define(NEG_BITS , 2#11001111). %% 1100 1111 | RLP encoded integer (infinite 1:s bitfield)
-define(EMPTY_MAP , 2#11011111). %% 1101 1111
-define(NEG_BIG_INT , 2#11101111). %% 1110 1111 | RLP encoded (integer - 64)
-define(TRUE , 2#11111111). %% 1111 1111
-define(SHORT_TUPLE_SIZE, 16).
-define(SHORT_LIST_SIZE, 16).
-define(SMALL_INT_SIZE, 64).
-define(SHORT_STRING_SIZE, 64).
-define(POS_SIGN, 0).
-define(NEG_SIGN, 1).
%% Object types
-define(OTYPE_ADDRESS, 0).
-define(OTYPE_BYTES, 1).
-define(OTYPE_CONTRACT, 2).
-define(OTYPE_ORACLE, 3).
-define(OTYPE_ORACLE_Q, 4).
-define(OTYPE_CHANNEL, 5).
-define(IS_TYPE_TAG(X), (X =:= ?TYPE_INTEGER orelse
X =:= ?TYPE_BOOLEAN orelse
X =:= ?TYPE_ANY orelse
X =:= ?TYPE_VAR orelse
X =:= ?TYPE_LIST orelse
X =:= ?TYPE_TUPLE orelse
X =:= ?TYPE_OBJECT orelse
X =:= ?TYPE_BITS orelse
X =:= ?TYPE_BYTES orelse
X =:= ?TYPE_MAP orelse
X =:= ?TYPE_STRING orelse
X =:= ?TYPE_VARIANT orelse
X =:= ?TYPE_CONTRACT_BYTEARRAY)).
%% --------------------------------------------------
%% Serialize
%% Serialized a Fate data value into a sequence of bytes
%% according to the Fate serialization specification.
%% TODO: The type Fate Data is not final yet.
-spec serialize(gmb_fate_data:fate_type()) -> binary().
serialize(?FATE_TRUE) -> <<?TRUE>>;
serialize(?FATE_FALSE) -> <<?FALSE>>;
serialize(?FATE_UNIT) -> <<?EMPTY_TUPLE>>; %% ! Untyped
serialize(?FATE_EMPTY_STRING) -> <<?EMPTY_STRING>>;
serialize(I) when ?IS_FATE_INTEGER(I) -> serialize_integer(I);
serialize(?FATE_BITS(Bits)) when is_integer(Bits) -> serialize_bits(Bits);
serialize(String) when ?IS_FATE_STRING(String),
?FATE_STRING_SIZE(String) > 0,
?FATE_STRING_SIZE(String) < ?SHORT_STRING_SIZE ->
Size = ?FATE_STRING_SIZE(String),
Bytes = ?FATE_STRING_VALUE(String),
<<Size:6, ?SHORT_STRING:2, Bytes/binary>>;
serialize(String) when ?IS_FATE_STRING(String),
?FATE_STRING_SIZE(String) > 0,
?FATE_STRING_SIZE(String) >= ?SHORT_STRING_SIZE ->
Bytes = ?FATE_STRING_VALUE(String),
<<?LONG_STRING,
(serialize_integer(?FATE_STRING_SIZE(String) - ?SHORT_STRING_SIZE))/binary
, Bytes/binary>>;
serialize(?FATE_BYTES(Bytes)) when is_binary(Bytes) ->
<<?OBJECT, ?OTYPE_BYTES, (serialize(?FATE_STRING(Bytes)))/binary>>;
serialize(?FATE_ADDRESS(Address)) when is_binary(Address) ->
<<?OBJECT, ?OTYPE_ADDRESS, (gmser_rlp:encode(Address))/binary>>;
serialize(?FATE_CONTRACT(Address)) when is_binary(Address) ->
<<?OBJECT, ?OTYPE_CONTRACT, (gmser_rlp:encode(Address))/binary>>;
serialize(?FATE_ORACLE(Address)) when is_binary(Address) ->
<<?OBJECT, ?OTYPE_ORACLE, (gmser_rlp:encode(Address))/binary>>;
serialize(?FATE_ORACLE_Q(Address)) when is_binary(Address) ->
<<?OBJECT, ?OTYPE_ORACLE_Q, (gmser_rlp:encode(Address))/binary>>;
serialize(?FATE_CHANNEL(Address)) when is_binary(Address) ->
<<?OBJECT, ?OTYPE_CHANNEL, (gmser_rlp:encode(Address))/binary>>;
serialize(?FATE_TUPLE(T)) when size(T) > 0 ->
S = size(T),
L = tuple_to_list(T),
Rest = << <<(serialize(E))/binary>> || E <- L >>,
if S < ?SHORT_TUPLE_SIZE ->
<<S:4, ?SHORT_TUPLE:4, Rest/binary>>;
true ->
Size = rlp_encode_int(S - ?SHORT_TUPLE_SIZE),
<<?LONG_TUPLE:8, Size/binary, Rest/binary>>
end;
serialize(L) when ?IS_FATE_LIST(L) ->
List = ?FATE_LIST_VALUE(L),
S = length(List),
Rest = << <<(serialize(El))/binary>> || El <- List >>,
if S < ?SHORT_LIST_SIZE ->
<<S:4, ?SHORT_LIST:4, Rest/binary>>;
true ->
Val = rlp_encode_int(S - ?SHORT_LIST_SIZE),
<<?LONG_LIST, Val/binary, Rest/binary>>
end;
serialize(Map) when ?IS_FATE_MAP(Map) ->
L = maps:to_list(?FATE_MAP_VALUE(Map)),
Size = length(L),
%% TODO: check all K same type, and all V same type
%% check K =/= map
Elements =
list_to_binary([ <<(serialize(K))/binary, (serialize(V))/binary>> || {K, V} <- sort_and_check(L) ]),
<<?MAP,
(rlp_encode_int(Size))/binary,
(Elements)/binary>>;
serialize(?FATE_STORE_MAP(Cache, Id)) when Cache =:= #{} ->
%% We should never get to serialization without having flushed the caches.
<<?MAP_ID, (rlp_encode_int(Id))/binary>>;
serialize(?FATE_VARIANT(Arities, Tag, Values)) ->
Arities = [A || A <- Arities, is_integer(A), A < 256],
Size = length(Arities),
if is_integer(Tag)
, 0 =< Tag
, Tag < Size
, is_tuple(Values) ->
Arity = lists:nth(Tag+1, Arities),
if size(Values) =:= Arity ->
EncodedArities = gmser_rlp:encode(list_to_binary(Arities)),
<<?VARIANT,
EncodedArities/binary,
Tag:8,
(serialize(?FATE_TUPLE(Values)))/binary
>>
end
end;
serialize(?FATE_TYPEREP(T)) ->
iolist_to_binary(serialize_type(T));
serialize(?FATE_CONTRACT_BYTEARRAY(B)) ->
<<?CONTRACT_BYTEARRAY,
(serialize_integer(?FATE_CONTRACT_BYTEARRAY_SIZE(B)))/binary
, B/binary>>.
%% -----------------------------------------------------
-spec serialize_type(gmb_fate_data:fate_type_type()) -> [byte()].
serialize_type(integer) -> [?TYPE_INTEGER];
serialize_type(boolean) -> [?TYPE_BOOLEAN];
serialize_type(any) -> [?TYPE_ANY];
serialize_type({tvar, N}) when 0 =< N, N =< 255 -> [?TYPE_VAR, N];
serialize_type({list, T}) -> [?TYPE_LIST | serialize_type(T)];
serialize_type({tuple, Ts}) ->
case length(Ts) of
N when N =< 255 ->
[?TYPE_TUPLE, N | [serialize_type(T) || T <- Ts]]
end;
serialize_type({bytes, any}) ->
[?TYPE_BYTES | binary_to_list(serialize_integer(-1))];
serialize_type({bytes, N}) when 0 =< N ->
[?TYPE_BYTES | binary_to_list(serialize_integer(N))];
serialize_type(address) -> [?TYPE_OBJECT, ?OTYPE_ADDRESS];
serialize_type(contract) -> [?TYPE_OBJECT, ?OTYPE_CONTRACT];
serialize_type(oracle) -> [?TYPE_OBJECT, ?OTYPE_ORACLE];
serialize_type(oracle_query)-> [?TYPE_OBJECT, ?OTYPE_ORACLE_Q];
serialize_type(channel) -> [?TYPE_OBJECT, ?OTYPE_CHANNEL];
serialize_type(bits) -> [?TYPE_BITS];
serialize_type({map, K, V}) -> [?TYPE_MAP
| serialize_type(K) ++ serialize_type(V)];
serialize_type(string) -> [?TYPE_STRING];
serialize_type({variant, ListOfVariants}) ->
Size = length(ListOfVariants),
if Size < 256 ->
[?TYPE_VARIANT, Size | [serialize_type(T) || T <- ListOfVariants]]
end;
serialize_type(contract_bytearray) -> [?TYPE_CONTRACT_BYTEARRAY].
-spec deserialize_type(binary()) -> {gmb_fate_data:fate_type_type(), binary()}.
deserialize_type(<<?TYPE_INTEGER, Rest/binary>>) -> {integer, Rest};
deserialize_type(<<?TYPE_BOOLEAN, Rest/binary>>) -> {boolean, Rest};
deserialize_type(<<?TYPE_ANY, Rest/binary>>) -> {any, Rest};
deserialize_type(<<?TYPE_VAR, Id, Rest/binary>>) -> {{tvar, Id}, Rest};
deserialize_type(<<?TYPE_LIST, Rest/binary>>) ->
{T, Rest2} = deserialize_type(Rest),
{{list, T}, Rest2};
deserialize_type(<<?TYPE_TUPLE, N, Rest/binary>>) ->
{Ts, Rest2} = deserialize_types(N, Rest, []),
{{tuple, Ts}, Rest2};
deserialize_type(<<?TYPE_BYTES, Rest/binary>>) ->
{N, Rest2} = deserialize_one(Rest),
true = is_integer(N),
if N == -1 ->
{{bytes, any}, Rest2};
0 =< N ->
{{bytes, N}, Rest2}
end;
deserialize_type(<<?TYPE_OBJECT, ObjectType, Rest/binary>>) ->
case ObjectType of
?OTYPE_ADDRESS -> {address, Rest};
?OTYPE_CONTRACT -> {contract, Rest};
?OTYPE_ORACLE -> {oracle, Rest};
?OTYPE_ORACLE_Q -> {oracle_query, Rest};
?OTYPE_CHANNEL -> {channel, Rest}
end;
deserialize_type(<<?TYPE_BITS, Rest/binary>>) -> {bits, Rest};
deserialize_type(<<?TYPE_MAP, Rest/binary>>) ->
{K, Rest2} = deserialize_type(Rest),
{V, Rest3} = deserialize_type(Rest2),
{{map, K, V}, Rest3};
deserialize_type(<<?TYPE_STRING, Rest/binary>>) ->
{string, Rest};
deserialize_type(<<?TYPE_VARIANT, Size, Rest/binary>>) ->
{Variants, Rest2} = deserialize_variants(Size, Rest, []),
{{variant, Variants}, Rest2};
deserialize_type(<<?TYPE_CONTRACT_BYTEARRAY, Rest/binary>>) -> {contract_bytearray, Rest}.
deserialize_variants(0, Rest, Variants) ->
{lists:reverse(Variants), Rest};
deserialize_variants(N, Rest, Variants) ->
{T, Rest2} = deserialize_type(Rest),
deserialize_variants(N-1, Rest2, [T|Variants]).
deserialize_types(0, Binary, Acc) ->
{lists:reverse(Acc), Binary};
deserialize_types(N, Binary, Acc) ->
{T, Rest} = deserialize_type(Binary),
deserialize_types(N-1, Rest, [T | Acc]).
%% -----------------------------------------------------
rlp_encode_int(S) when S >= 0 ->
gmser_rlp:encode(binary:encode_unsigned(S)).
%% first byte of the binary gives the number of bytes we need <<129>> is 1, <<130>> = 2,
%% so <<129, 0>> is <<0>> and <<130, 0, 0>> is <<0, 0>>
rlp_decode_int(Binary) ->
{Bin1, Rest} = gmser_rlp:decode_one(Binary),
Int = binary:decode_unsigned(Bin1),
ReEncode = rlp_encode_int(Int),
case <<ReEncode/binary, Rest/binary>> == Binary of
true ->
{Int, Rest};
false ->
error({none_unique_encoding, Bin1, ReEncode})
end.
serialize_integer(I) when ?IS_FATE_INTEGER(I) ->
V = ?FATE_INTEGER_VALUE(I),
Abs = abs(V),
Sign = case V < 0 of
true -> ?NEG_SIGN;
false -> ?POS_SIGN
end,
if Abs < ?SMALL_INT_SIZE -> <<Sign:1, Abs:6, ?SMALL_INT:1>>;
Sign =:= ?NEG_SIGN -> <<?NEG_BIG_INT,
(rlp_encode_int(Abs - ?SMALL_INT_SIZE))/binary>>;
Sign =:= ?POS_SIGN -> <<?POS_BIG_INT,
(rlp_encode_int(Abs - ?SMALL_INT_SIZE))/binary>>
end.
serialize_bits(B) when is_integer(B) ->
Abs = abs(B),
if
B < 0 -> <<?NEG_BITS, (rlp_encode_int(Abs))/binary>>;
B >= 0 -> <<?POS_BITS, (rlp_encode_int(Abs))/binary>>
end.
-spec deserialize(binary()) -> gmb_fate_data:fate_type().
deserialize(B) ->
{T, <<>>} = deserialize2(B),
T.
deserialize_one(B) -> deserialize2(B).
deserialize2(<<?POS_SIGN:1, I:6, ?SMALL_INT:1, Rest/binary>>) ->
{?MAKE_FATE_INTEGER(I), Rest};
deserialize2(<<?NEG_SIGN:1, I:6, ?SMALL_INT:1, Rest/binary>>) ->
if I =/= 0 -> {?MAKE_FATE_INTEGER(-I), Rest};
I == 0 -> error({illegal_sign, I})
end;
deserialize2(<<?NEG_BIG_INT, Rest/binary>>) ->
{Bint, Rest2} = rlp_decode_int(Rest),
{?MAKE_FATE_INTEGER(-Bint - ?SMALL_INT_SIZE),
Rest2};
deserialize2(<<?POS_BIG_INT, Rest/binary>>) ->
{Bint, Rest2} = rlp_decode_int(Rest),
{?MAKE_FATE_INTEGER(Bint + ?SMALL_INT_SIZE),
Rest2};
deserialize2(<<?NEG_BITS, Rest/binary>>) ->
case rlp_decode_int(Rest) of
{Pos, Rest2} when Pos > 0 ->
{?FATE_BITS(-Pos), Rest2};
{N, _} ->
error({illegal_parameter, neg_bits, N})
end;
deserialize2(<<?POS_BITS, Rest/binary>>) ->
{Bint, Rest2} = rlp_decode_int(Rest),
{?FATE_BITS(Bint), Rest2};
deserialize2(<<?LONG_STRING, Rest/binary>>) ->
{S, Rest2} = deserialize_one(Rest),
true = is_integer(S) andalso S >= 0,
Size = S + ?SHORT_STRING_SIZE,
String = binary:part(Rest2, 0, Size),
Rest3 = binary:part(Rest2, byte_size(Rest2), - (byte_size(Rest2) - Size)),
{?MAKE_FATE_STRING(String), Rest3};
deserialize2(<<?CONTRACT_BYTEARRAY, Rest/binary>>) ->
{Size, Rest2} = deserialize_one(Rest),
true = is_integer(Size) andalso Size >= 0,
FateCode = binary:part(Rest2, 0, Size),
Rest3 = binary:part(Rest2, byte_size(Rest2), - (byte_size(Rest2) - Size)),
{?MAKE_FATE_CONTRACT_BYTEARRAY(FateCode), Rest3};
deserialize2(<<S:6, ?SHORT_STRING:2, Rest/binary>>) ->
String = binary:part(Rest, 0, S),
Rest2 = binary:part(Rest, byte_size(Rest), - (byte_size(Rest) - S)),
{?MAKE_FATE_STRING(String), Rest2};
deserialize2(<<?OBJECT, ?OTYPE_BYTES, Rest/binary>>) ->
{String, Rest2} = deserialize_one(Rest),
true = ?IS_FATE_STRING(String),
{?FATE_BYTES(?FATE_STRING_VALUE(String)), Rest2};
deserialize2(<<?OBJECT, ObjectType, Rest/binary>>) ->
{A, Rest2} = gmser_rlp:decode_one(Rest),
Val =
case ObjectType of
?OTYPE_ADDRESS -> ?FATE_ADDRESS(A);
?OTYPE_CONTRACT -> ?FATE_CONTRACT(A);
?OTYPE_ORACLE -> ?FATE_ORACLE(A);
?OTYPE_ORACLE_Q -> ?FATE_ORACLE_Q(A);
?OTYPE_CHANNEL -> ?FATE_CHANNEL(A)
end,
{Val, Rest2};
deserialize2(<<?TRUE, Rest/binary>>) ->
{?FATE_TRUE, Rest};
deserialize2(<<?FALSE, Rest/binary>>) ->
{?FATE_FALSE, Rest};
deserialize2(<<?EMPTY_TUPLE, Rest/binary>>) ->
{?FATE_UNIT, Rest};
deserialize2(<<?EMPTY_STRING, Rest/binary>>) ->
{?FATE_EMPTY_STRING, Rest};
deserialize2(<<?LONG_TUPLE, Rest/binary>>) ->
{Size, Rest1} = rlp_decode_int(Rest),
N = Size + ?SHORT_TUPLE_SIZE,
{List, Rest2} = deserialize_elements(N, Rest1),
{?FATE_TUPLE(list_to_tuple(List)), Rest2};
deserialize2(<<S:4, ?SHORT_TUPLE:4, Rest/binary>>) ->
{List, Rest1} = deserialize_elements(S, Rest),
{?FATE_TUPLE(list_to_tuple(List)), Rest1};
deserialize2(<<?LONG_LIST, Rest/binary>>) ->
{Size, Rest1} = rlp_decode_int(Rest),
Length = Size + ?SHORT_LIST_SIZE,
{List, Rest2} = deserialize_elements(Length, Rest1),
{?MAKE_FATE_LIST(List), Rest2};
deserialize2(<<S:4, ?SHORT_LIST:4, Rest/binary>>) ->
{List, Rest1} = deserialize_elements(S, Rest),
{?MAKE_FATE_LIST(List), Rest1};
deserialize2(<<?MAP, Rest/binary>>) ->
{Size, Rest1} = rlp_decode_int(Rest),
{List, Rest2} = deserialize_elements(2*Size, Rest1),
KVList = insert_kv(List),
case sort_and_check(KVList) == KVList of
true ->
Map = maps:from_list(KVList),
{?MAKE_FATE_MAP(Map), Rest2};
false ->
error({unknown_map_serialization_format, KVList})
end;
deserialize2(<<?MAP_ID, Rest/binary>>) ->
{Id, Rest1} = rlp_decode_int(Rest),
{?FATE_STORE_MAP(#{}, Id), Rest1};
deserialize2(<<?VARIANT, Rest/binary>>) ->
{AritiesBin, <<Tag:8, Rest2/binary>>} = gmser_rlp:decode_one(Rest),
Arities = binary_to_list(AritiesBin),
Size = length(Arities),
if Tag > Size -> exit({too_large_tag_in_variant, Tag, Size});
true ->
{?FATE_TUPLE(T), Rest3} = deserialize2(Rest2),
Arity = lists:nth(Tag+1, Arities),
NumElements = size(T),
if NumElements =/= Arity ->
exit({tag_does_not_match_type_in_variant, Tag, Arity});
true ->
{?FATE_VARIANT(Arities, Tag, T), Rest3}
end
end;
deserialize2(<<TypeTag, _/binary>> = Bin) when ?IS_TYPE_TAG(TypeTag) ->
{Type, Rest} = deserialize_type(Bin),
{?FATE_TYPEREP(Type), Rest}.
insert_kv([]) -> [];
insert_kv([K, V | R]) -> [{K, V} | insert_kv(R)].
deserialize_elements(0, Rest) ->
{[], Rest};
deserialize_elements(N, Es) ->
{E, Rest} = deserialize2(Es),
{Tail, Rest2} = deserialize_elements(N-1, Rest),
{[E|Tail], Rest2}.
%% It is important to remove duplicated keys.
%% For deserialize this check is needed to observe illegal duplicates.
sort_and_check(List) ->
UniqKeyList =
lists:foldr(fun({K, V}, Acc) ->
case valid_key_type(K) andalso not lists:keymember(K, 1, Acc) of
true -> [{K,V}|Acc];
false -> Acc
end
end, [], List),
sort(UniqKeyList).
%% Sorting is used to get a unique result.
%% Deserialization is checking whether the provided key-value pairs are sorted
%% and raises an exception if not.
sort(KVList) ->
SortFun = fun({K1, _}, {K2, _}) ->
gmb_fate_data:elt(K1, K2)
end,
lists:sort(SortFun, KVList).
valid_key_type(K) when ?IS_FATE_MAP(K) ->
error({map_as_key_in_map, K});
valid_key_type(?FATE_STORE_MAP(_, _) = K) ->
error({map_as_key_in_map, K});
valid_key_type(K) when is_list(K) ->
lists:all(fun(E) -> valid_key_type(E) end, K);
valid_key_type(K) when is_tuple(K) ->
lists:all(fun(E) -> valid_key_type(E) end, tuple_to_list(K));
valid_key_type(_K) ->
true.

View File

@ -1,133 +0,0 @@
-module(gmb_fate_generate_docs).
-vsn("3.4.1").
-export([generate_documentation/2, generate_documentation/3]).
-export(
[ gen_protocol_opcodes_flags_and_gas/1
, gen_protocol_description_of_operations/1
, gen_protocol_opcodes/1
]).
-define(LIMA_PROTOCOL_VSN, 4).
-define(IRIS_PROTOCOL_VSN, 5).
generate_documentation(Filename, Fields) ->
generate_documentation(Filename, Fields, fun(_) -> true end).
generate_documentation(Filename, Fields, Filter) when is_function(Filter, 1) ->
{ok, File} = file:open(Filename, [write, {encoding, utf8}]),
Header =
lists:flatten(
"|" ++ [" " ++ header_name(F) ++ " |" || F <- Fields] ++ "\n"
),
Separator =
lists:flatten(
"|" ++ [" " ++ ["-" || _ <- header_name(F)] ++ " |" || F <- Fields] ++ "\n"
),
Instructions =
lists:flatten(
[gen_doc_for_op(Op, Fields)
++ "\n" || Op <- gmb_fate_generate_ops:get_ops(), Filter(Op)]),
io:format(File, "~ts~ts~ts\n", [Header, Separator, Instructions]),
file:close(File).
header_name(opname) ->
"Name";
header_name(opcode) ->
"Opcode";
header_name(arity) ->
"Arity";
header_name(end_bb) ->
"Ends basic block";
header_name(in_auth) ->
"Allowed in auth";
header_name(offchain) ->
"Allowed offchain";
header_name(format) ->
"Args";
header_name(doc) ->
"Description";
header_name(gas) ->
"Gas cost";
header_name(arg_types) ->
"Arg types";
header_name(res_type) ->
"Res type".
gen_doc_for_op(#{ opname := OpName
, opcode := OpCode
, arity := Arity
, end_bb := EndBB
, in_auth := InAuth
, offchain := AllowedOffchain
, format := FateFormat
, doc := Doc
, gas := Gas
, arg_types := ArgTypes
, res_type := ResType
}, Fields) ->
"| " ++
string:join(
[ case Field of
opname -> io_lib:format("`~s`", [OpName]);
opcode -> io_lib:format("0x~.16b", [OpCode]);
arity -> io_lib:format("~p", [Arity]);
end_bb -> io_lib:format("~p", [EndBB]);
in_auth -> io_lib:format("~p", [InAuth]);
offchain -> io_lib:format("~p", [AllowedOffchain]);
format ->
case FateFormat of
[] -> "";
_ -> lists:join(
" ",
[format_arg_doc(A) ||
A <-
lists:zip(FateFormat,
lists:seq(0,length(FateFormat)-1))])
end;
doc -> Doc;
gas when is_integer(Gas) -> io_lib:format("~p", [Gas]);
gas when is_list(Gas) ->
lists:flatten(
string:join(
[ io_lib:format(
"~p (~s)",
[GasVal, protocol_name(Prot)]
)
|| {Prot, GasVal} <- Gas
], ", "));
arg_types -> io_lib:format("~p", [ArgTypes]);
res_type -> io_lib:format("~p", [ResType])
end
|| Field <- Fields
],
" | ") ++ " |".
protocol_name(?LIMA_PROTOCOL_VSN) ->
"lima";
protocol_name(?IRIS_PROTOCOL_VSN) ->
"iris".
format_arg_doc({a, N}) -> io_lib:format("Arg~w", [N]);
format_arg_doc({is,_N}) -> "Identifier";
format_arg_doc({ii,_N}) -> "Integer";
format_arg_doc({li,_N}) -> "[Integers]";
format_arg_doc({t,_N}) -> "Type".
%% --- protocol documentation ---
gen_protocol_description_of_operations(Filename) ->
generate_documentation(
Filename, [opname, format, doc, arg_types, res_type]
).
gen_protocol_opcodes_flags_and_gas(Filename) ->
generate_documentation(
Filename, [opcode, opname, end_bb, in_auth, offchain, gas]
).
gen_protocol_opcodes(Filename) ->
generate_documentation(
Filename, [opcode, opname]
).

View File

@ -1,800 +0,0 @@
-module(gmb_fate_generate_ops).
-vsn("3.4.1").
-export([ gen_and_halt/1
, generate/0
, get_ops/0
, test_asm_generator/1 ]).
gen_and_halt([SrcDirArg, IncludeDirArg]) ->
generate(atom_to_list(SrcDirArg),
atom_to_list(IncludeDirArg)),
halt().
generate() -> generate("src/", "include/").
get_ops() -> gen(ops_defs()).
generate(Src, Include) ->
check_defs(ops_defs()),
Ops = get_ops(),
%% io:format("ops: ~p\n", [Ops]),
HrlFile = Include ++ "gmb_fate_opcodes.hrl",
generate_header_file(HrlFile, Ops),
generate_opcodes_ops(gmb_fate_opcodes, HrlFile, Src, Ops),
generate_code_ops(gmb_fate_ops, Src, Ops),
generate_scanner("gmb_fate_asm_scan.template", "gmb_fate_asm_scan.xrl", Src, Ops),
gen_asm_pp(gmb_fate_pp, Src, Ops).
check_defs(List) ->
true = check_numbering(0, lists:keysort(2, List)).
check_numbering(N, [T|Rest]) ->
OpCode = element(2, T),
case OpCode of
N -> check_numbering(N+1, Rest);
16#6d -> check_numbering(16#6d+1, Rest); %% Oracles
16#7b -> check_numbering(16#7b+1, Rest); %% Oracles
16#9b -> check_numbering(16#9b+1, Rest); %% Oracles
16#f0 -> check_numbering(16#f0+1, Rest);
16#fa -> check_numbering(16#fa+1, Rest);
_ when OpCode < N -> {duplicate_opcode, OpCode};
_ when OpCode > N -> {missing_opcode, N}
end;
check_numbering(_, []) -> true.
-define(LIMA_PROTOCOL_VSN, 4).
-define(IRIS_PROTOCOL_VSN, 5).
-define(GAS(A), A).
-define(GAS_IRIS(A, B), [{?IRIS_PROTOCOL_VSN, B}, {?LIMA_PROTOCOL_VSN, A}]).
ops_defs() ->
%% Opname, Opcode, end_bb, in_auth,offchain, gas, format, Constructor, ArgType, ResType, Documentation
[ { 'RETURN', 16#00, true, true, true, ?GAS(10), [], return, {}, any, "Return from function call, top of stack is return value . The type of the retun value has to match the return type of the function."}
, { 'RETURNR', 16#01, true, true, true, ?GAS(10), [a], returnr, {any}, any, "Push Arg0 and return from function. The type of the retun value has to match the return type of the function."}
, { 'CALL', 16#02, true, true, true, ?GAS(10), [a], call, {string}, any, "Call the function Arg0 with args on stack. The types of the arguments has to match the argument typs of the function."}
, { 'CALL_R', 16#03, true, false, true, ?GAS(100), [a,is,a,a,a], call_r, {contract, string, typerep, typerep, integer}, any, "Remote call to contract Arg0 and function Arg1 of type Arg2 => Arg3 with value Arg4. The types of the arguments has to match the argument types of the function."}
, { 'CALL_T', 16#04, true, true, true, ?GAS(10), [a], call_t, {string}, any, "Tail call to function Arg0. The types of the arguments has to match the argument typs of the function. And the return type of the called function has to match the type of the current function."}
, { 'CALL_GR', 16#05, true, false, true, ?GAS(100), [a,is,a,a,a,a], call_gr, {contract, string, typerep, typerep, integer, integer}, any, "Remote call with gas cap in Arg4. Otherwise as CALL_R."}
, { 'JUMP', 16#06, true, true, true, ?GAS(10), [ii], jump, {integer}, none, "Jump to a basic block. The basic block has to exist in the current function."}
, { 'JUMPIF', 16#07, true, true, true, ?GAS(10), [a,ii], jumpif, {boolean, integer}, none, "Conditional jump to a basic block. If Arg0 then jump to Arg1."}
, { 'SWITCH_V2', 16#08, true, true, true, ?GAS(10), [a,ii,ii], switch, {variant, integer, ingeger}, none, "Conditional jump to a basic block on variant tag."}
, { 'SWITCH_V3', 16#09, true, true, true, ?GAS(10), [a,ii,ii,ii], switch, {variant, integer, integer, ingeger}, none, "Conditional jump to a basic block on variant tag."}
, { 'SWITCH_VN', 16#0a, true, true, true, ?GAS(10), [a, li], switch, {variant, {list, integer}}, none, "Conditional jump to a basic block on variant tag."}
, { 'CALL_VALUE', 16#0b, false, true, true, ?GAS(10), [a], call_value, {}, integer, "The value sent in the current remote call."}
, { 'PUSH', 16#0c, false, true, true, ?GAS(10), [a], push, {any}, any, "Push argument to stack."}
, { 'DUPA', 16#0d, false, true, true, ?GAS(10), [], dup, {any}, any, "Duplicate top of stack."}
, { 'DUP', 16#0e, false, true, true, ?GAS(10), [a], dup, {any}, any, "push Arg0 stack pos on top of stack."}
, { 'POP', 16#0f, false, true, true, ?GAS(10), [a], pop, {integer}, integer, "Arg0 := top of stack."}
, { 'INCA', 16#10, false, true, true, ?GAS(10), [], inc, {integer}, integer, "Increment accumulator."}
, { 'INC', 16#11, false, true, true, ?GAS(10), [a], inc, {integer}, integer, "Increment argument."}
, { 'DECA', 16#12, false, true, true, ?GAS(10), [], dec, {integer}, integer, "Decrement accumulator."}
, { 'DEC', 16#13, false, true, true, ?GAS(10), [a], dec, {integer}, integer, "Decrement argument."}
, { 'ADD', 16#14, false, true, true, ?GAS(10), [a,a,a], add, {integer, integer}, integer, "Arg0 := Arg1 + Arg2."}
, { 'SUB', 16#15, false, true, true, ?GAS(10), [a,a,a], sub, {integer, integer}, integer, "Arg0 := Arg1 - Arg2."}
, { 'MUL', 16#16, false, true, true, ?GAS(10), [a,a,a], mul, {integer, integer}, integer, "Arg0 := Arg1 * Arg2."}
, { 'DIV', 16#17, false, true, true, ?GAS(10), [a,a,a], divide, {integer, integer}, integer, "Arg0 := Arg1 / Arg2."}
, { 'MOD', 16#18, false, true, true, ?GAS(10), [a,a,a], modulo, {integer, integer}, integer, "Arg0 := Arg1 mod Arg2."}
, { 'POW', 16#19, false, true, true, ?GAS(10), [a,a,a], pow, {integer, integer}, integer, "Arg0 := Arg1 ^ Arg2."}
, { 'STORE', 16#1a, false, true, true, ?GAS(10), [a,a], store, {any}, any, "Arg0 := Arg1."}
, { 'SHA3', 16#1b, false, true, true, ?GAS(100), [a,a], sha3, {any}, hash, "Arg0 := sha3(Arg1)."}
, { 'SHA256', 16#1c, false, true, true, ?GAS(100), [a,a], sha256, {any}, hash, "Arg0 := sha256(Arg1)."}
, { 'BLAKE2B', 16#1d, false, true, true, ?GAS(100), [a,a], blake2b, {any}, hash, "Arg0 := blake2b(Arg1)."}
, { 'LT', 16#1e, false, true, true, ?GAS(10), [a,a,a], lt, {integer, integer}, boolean, "Arg0 := Arg1 < Arg2."}
, { 'GT', 16#1f, false, true, true, ?GAS(10), [a,a,a], gt, {integer, integer}, boolean, "Arg0 := Arg1 > Arg2."}
, { 'EQ', 16#20, false, true, true, ?GAS(10), [a,a,a], eq, {integer, integer}, boolean, "Arg0 := Arg1 = Arg2."}
, { 'ELT', 16#21, false, true, true, ?GAS(10), [a,a,a], elt, {integer, integer}, boolean, "Arg0 := Arg1 =< Arg2."}
, { 'EGT', 16#22, false, true, true, ?GAS(10), [a,a,a], egt, {integer, integer}, boolean, "Arg0 := Arg1 >= Arg2."}
, { 'NEQ', 16#23, false, true, true, ?GAS(10), [a,a,a], neq, {integer, integer}, boolean, "Arg0 := Arg1 /= Arg2."}
, { 'AND', 16#24, false, true, true, ?GAS(10), [a,a,a], and_op, {boolean, boolean}, boolean, "Arg0 := Arg1 and Arg2."}
, { 'OR', 16#25, false, true, true, ?GAS(10), [a,a,a], or_op, {boolean, boolean}, boolean, "Arg0 := Arg1 or Arg2."}
, { 'NOT', 16#26, false, true, true, ?GAS(10), [a,a], not_op, {boolean}, boolean, "Arg0 := not Arg1."}
, { 'TUPLE', 16#27, false, true, true, ?GAS(10), [a,ii], tuple, {integer}, tuple, "Arg0 := tuple of size = Arg1. Elements on stack."}
, { 'ELEMENT', 16#28, false, true, true, ?GAS(10), [a,a,a], element_op, {integer, tuple}, any, "Arg1 := element(Arg2, Arg3)."}
, { 'SETELEMENT', 16#29, false, true, true, ?GAS(10), [a,a,a,a], setelement, {integer, tuple, any}, tuple, "Arg0 := a new tuple similar to Arg2, but with element number Arg1 replaced by Arg3."}
, { 'MAP_EMPTY', 16#2a, false, true, true, ?GAS(10), [a], map_empty, {}, map, "Arg0 := #{}."}
, { 'MAP_LOOKUP', 16#2b, false, true, true, ?GAS(10), [a,a,a], map_lookup, {map, any}, any, "Arg0 := lookup key Arg2 in map Arg1."}
, { 'MAP_LOOKUPD', 16#2c, false, true, true, ?GAS(10), [a,a,a,a], map_lookup, {map, any, any}, any, "Arg0 := lookup key Arg2 in map Arg1 if key exists in map otherwise Arg0 := Arg3."}
, { 'MAP_UPDATE', 16#2d, false, true, true, ?GAS(10), [a,a,a,a], map_update, {map, any, any}, map, "Arg0 := update key Arg2 in map Arg1 with value Arg3."}
, { 'MAP_DELETE', 16#2e, false, true, true, ?GAS(10), [a,a,a], map_delete, {map, any}, map, "Arg0 := delete key Arg2 from map Arg1."}
, { 'MAP_MEMBER', 16#2f, false, true, true, ?GAS(10), [a,a,a], map_member, {map, any}, boolean, "Arg0 := true if key Arg2 is in map Arg1."}
, { 'MAP_FROM_LIST', 16#30, false, true, true, ?GAS(10), [a,a], map_from_list, {{list, {tuple, [any, any]}}}, map, "Arg0 := make a map from (key, value) list in Arg1."}
, { 'MAP_SIZE', 16#31, false, true, true, ?GAS(10), [a,a], map_size_, {map}, integer, "Arg0 := The size of the map Arg1."}
, { 'MAP_TO_LIST', 16#32, false, true, true, ?GAS(10), [a,a], map_to_list, {map}, list, "Arg0 := The tuple list representation of the map Arg1."}
, { 'IS_NIL', 16#33, false, true, true, ?GAS(10), [a,a], is_nil, {list}, boolean, "Arg0 := true if Arg1 == []."}
, { 'CONS', 16#34, false, true, true, ?GAS(10), [a,a,a], cons, {any, list}, list, "Arg0 := [Arg1|Arg2]."}
, { 'HD', 16#35, false, true, true, ?GAS(10), [a,a], hd, {list}, any, "Arg0 := head of list Arg1."}
, { 'TL', 16#36, false, true, true, ?GAS(10), [a,a], tl, {list}, list, "Arg0 := tail of list Arg1."}
, { 'LENGTH', 16#37, false, true, true, ?GAS(10), [a,a], length, {list}, integer, "Arg0 := length of list Arg1."}
, { 'NIL', 16#38, false, true, true, ?GAS(10), [a], nil, {}, list, "Arg0 := []."}
, { 'APPEND', 16#39, false, true, true, ?GAS(10), [a,a,a], append, {list, list}, list, "Arg0 := Arg1 ++ Arg2."}
, { 'STR_JOIN', 16#3a, false, true, true, ?GAS(10), [a,a,a], str_join, {string, string}, string, "Arg0 := string Arg1 followed by string Arg2."}
, { 'INT_TO_STR', 16#3b, false, true, true, ?GAS(100), [a,a], int_to_str, {integer}, string, "Arg0 := turn integer Arg1 into a string."}
, { 'ADDR_TO_STR', 16#3c, false, true, true, ?GAS(100), [a,a], addr_to_str, {address}, string, "Arg0 := turn address Arg1 into a string."}
, { 'STR_REVERSE', 16#3d, false, true, true, ?GAS(100), [a,a], str_reverse, {string}, string, "Arg0 := the reverse of string Arg1."}
, { 'STR_LENGTH', 16#3e, false, true, true, ?GAS(10), [a,a], str_length, {string}, integer, "Arg0 := The length of the string Arg1."}
, { 'BYTES_TO_INT', 16#3f, false, true, true, ?GAS(10), [a,a], bytes_to_int, {bytes}, integer, "Arg0 := bytes_to_int(Arg1)"}
, { 'BYTES_TO_STR', 16#40, false, true, true, ?GAS(100), [a,a], bytes_to_str, {bytes}, string, "Arg0 := bytes_to_str(Arg1)"}
, { 'BYTES_CONCAT', 16#41, false, true, true, ?GAS(10), [a,a,a], bytes_concat, {bytes, bytes}, bytes, "Arg0 := bytes_concat(Arg1, Arg2)"}
, { 'BYTES_SPLIT', 16#42, false, true, true, ?GAS(10), [a,a,a], bytes_split, {bytes, integer}, bytes, "Arg0 := bytes_split(Arg2, Arg1), where Arg2 is the length of the first chunk."}
, { 'INT_TO_ADDR', 16#43, false, true, true, ?GAS(10), [a,a], int_to_addr, {integer}, address, "Arg0 := turn integer Arg1 into an address."}
, { 'VARIANT', 16#44, false, true, true, ?GAS(10), [a,a,a,a], variant, {integer, integer, integer}, variant, "Arg0 := create a variant of size Arg1 with the tag Arg2 (Arg2 < Arg1) and take Arg3 elements from the stack."}
, { 'VARIANT_TEST', 16#45, false, true, true, ?GAS(10), [a,a,a], variant_test, {variant, integer}, boolean, "Arg0 := true if variant Arg1 has the tag Arg2."}
, { 'VARIANT_ELEMENT', 16#46, false, true, true, ?GAS(10), [a,a,a], variant_element, {variant, integer}, any, "Arg0 := element number Arg2 from variant Arg1."}
, { 'BITS_NONEA', 16#47, false, true, true, ?GAS(10), [], bits_none, {}, bits, "push an empty bitmap on the stack."}
, { 'BITS_NONE', 16#48, false, true, true, ?GAS(10), [a], bits_none, {}, bits, "Arg0 := empty bitmap."}
, { 'BITS_ALLA', 16#49, false, true, true, ?GAS(10), [], bits_all, {}, bits, "push a full bitmap on the stack."}
, { 'BITS_ALL', 16#4a, false, true, true, ?GAS(10), [a], bits_all, {}, bits, "Arg0 := full bitmap."}
, { 'BITS_ALL_N', 16#4b, false, true, true, ?GAS(10), [a,a], bits_all_n, {integer}, bits, "Arg0 := bitmap with Arg1 bits set."}
, { 'BITS_SET', 16#4c, false, true, true, ?GAS(10), [a,a,a], bits_set, {bits, integer}, bits, "Arg0 := set bit Arg2 of bitmap Arg1."}
, { 'BITS_CLEAR', 16#4d, false, true, true, ?GAS(10), [a,a,a], bits_clear, {bits, integer}, bits, "Arg0 := clear bit Arg2 of bitmap Arg1."}
, { 'BITS_TEST', 16#4e, false, true, true, ?GAS(10), [a,a,a], bits_test, {bits, integer}, boolean, "Arg0 := true if bit Arg2 of bitmap Arg1 is set."}
, { 'BITS_SUM', 16#4f, false, true, true, ?GAS(10), [a,a], bits_sum, {bits}, integer, "Arg0 := sum of set bits in bitmap Arg1. Exception if infinit bitmap."}
, { 'BITS_OR', 16#50, false, true, true, ?GAS(10), [a,a,a], bits_or, {bits, bits}, bits, "Arg0 := Arg1 v Arg2."}
, { 'BITS_AND', 16#51, false, true, true, ?GAS(10), [a,a,a], bits_and, {bits, bits}, bits, "Arg0 := Arg1 ^ Arg2."}
, { 'BITS_DIFF', 16#52, false, true, true, ?GAS(10), [a,a,a], bits_diff, {bits, bits}, bits, "Arg0 := Arg1 - Arg2."}
, { 'BALANCE', 16#53, false, true, true, ?GAS(10), [a], balance, {}, integer, "Arg0 := The current contract balance."}
, { 'ORIGIN', 16#54, false, true, true, ?GAS(10), [a], origin, {}, address, "Arg0 := Address of contract called by the call transaction."}
, { 'CALLER', 16#55, false, true, true, ?GAS(10), [a], caller, {}, address, "Arg0 := The address that signed the call transaction."}
, { 'BLOCKHASH', 16#56, false, true, true, ?GAS_IRIS(10, 1000), [a,a], blockhash, {integer}, variant, "Arg0 := The blockhash at height."}
, { 'BENEFICIARY', 16#57, false, true, true, ?GAS(10), [a], beneficiary, {}, address, "Arg0 := The address of the current beneficiary."}
, { 'TIMESTAMP', 16#58, false, true, true, ?GAS(10), [a], timestamp, {}, integer, "Arg0 := The current timestamp. Unrelaiable, don't use for anything."}
, { 'GENERATION', 16#59, false, true, true, ?GAS(10), [a], generation, {}, integer, "Arg0 := The block height of the cureent generation."}
, { 'MICROBLOCK', 16#5a, false, true, true, ?GAS(10), [a], microblock, {}, integer, "Arg0 := The current micro block number."}
, { 'DIFFICULTY', 16#5b, false, true, true, ?GAS(10), [a], difficulty, {}, integer, "Arg0 := The current difficulty."}
, { 'GASLIMIT', 16#5c, false, true, true, ?GAS(10), [a], gaslimit, {}, integer, "Arg0 := The current gaslimit."}
, { 'GAS', 16#5d, false, true, true, ?GAS(10), [a], gas, {}, integer, "Arg0 := The amount of gas left."}
, { 'ADDRESS', 16#5e, false, true, true, ?GAS(10), [a], address, {}, address, "Arg0 := The current contract address."}
, { 'GASPRICE', 16#5f, false, true, true, ?GAS(10), [a], gasprice, {}, integer, "Arg0 := The current gas price."}
, { 'LOG0', 16#60, false, true, true, ?GAS(1000), [a], log, {string}, none, "Create a log message in the call object."}
, { 'LOG1', 16#61, false, true, true, ?GAS(1100), [a,a], log, {integer, string}, none, "Create a log message with one topic in the call object."}
, { 'LOG2', 16#62, false, true, true, ?GAS(1200), [a,a,a], log, {integer, integer, string}, none, "Create a log message with two topics in the call object."}
, { 'LOG3', 16#63, false, true, true, ?GAS(1300), [a,a,a,a], log, {integer, integer, integer, string}, none, "Create a log message with three topics in the call object."}
, { 'LOG4', 16#64, false, true, true, ?GAS(1400), [a,a,a,a,a], log, {integer, integer, integer, integer, string}, none, "Create a log message with four topics in the call object."}
%% Transaction ops
, { 'SPEND', 16#65, false, false, true, ?GAS_IRIS(100, 5000), [a,a], spend, {address, integer}, none, "Transfer Arg1 tokens to account Arg0. (If the contract account has at least that many tokens."}
%% Intentional gap (was oracles)
, { 'AENS_RESOLVE', 16#6d, false, false, true, ?GAS_IRIS(100, 2000), [a,a,a,a], aens_resolve, {string, string, typerep}, variant, "Resolve name in Arg0 with tag Arg1. Arg2 describes the type parameter of the resolved name."}
, { 'AENS_PRECLAIM', 16#6e, false, false, false, ?GAS_IRIS(100, 10000), [a,a,a], aens_preclaim, {signature, address, hash}, none, "Preclaim the hash in Arg2 for address in Arg1. Arg0 contains delegation signature."}
, { 'AENS_CLAIM', 16#6f, false, false, false, ?GAS_IRIS(100, 10000), [a,a,a,a,a], aens_claim, {signature, address, string, integer, integer}, none, "Attempt to claim the name in Arg2 for address in Arg1 at a price in Arg4. Arg3 contains the salt used to hash the preclaim. Arg0 contains delegation signature."}
, { 'AENS_UPDATE', 16#70, false, false, false, ?GAS_IRIS(100, 10000), [a,a,a,a,a,a], aens_update, {signature, address, string, variant, variant, variant}, none, "Updates name in Arg2 for address in Arg1. Arg3 contains optional ttl (of type Chain.ttl), Arg4 contains optional client_ttl (of type int), Arg5 contains optional pointers (of type map(string, pointee))"}
, { 'AENS_TRANSFER', 16#71, false, false, false, ?GAS_IRIS(100, 10000), [a,a,a,a], aens_transfer,{signature, address, address, string}, none, "Transfer ownership of name Arg3 from account Arg1 to Arg2. Arg0 contains delegation signature."}
, { 'AENS_REVOKE', 16#72, false, false, false, ?GAS_IRIS(100, 10000), [a,a,a], aens_revoke, {signature, address, string}, none, "Revoke the name in Arg2 from owner Arg1. Arg0 contains delegation signature."}
, { 'BALANCE_OTHER', 16#73, false, true, true, ?GAS_IRIS( 50, 2000), [a,a], balance_other, {address}, integer, "Arg0 := The balance of address Arg1."}
, { 'VERIFY_SIG', 16#74, false, true, true, ?GAS(1300), [a,a,a,a], verify_sig, {bytes, address, bytes}, boolean, "Arg0 := verify_sig(Hash, PubKey, Signature)"}
, { 'VERIFY_SIG_SECP256K1',16#75, false, true, true, ?GAS(1300), [a,a,a,a], verify_sig_secp256k1, {bytes, bytes, bytes}, boolean, "Arg0 := verify_sig_secp256k1(Hash, PubKey, Signature)"}
, { 'CONTRACT_TO_ADDRESS', 16#76, false, true, true, ?GAS(10), [a,a], contract_to_address, {contract}, address, "Arg0 := Arg1 - A no-op type conversion"}
, { 'AUTH_TX_HASH', 16#77, false, true, true, ?GAS(10), [a], auth_tx_hash, {}, variant, "If in GA authentication context return Some(TxHash) otherwise None."}
%% Intentional gap (was oracles)
, { 'IS_CONTRACT', 16#7b, false, false, true, ?GAS(100), [a,a], is_contract, {address}, bool, "Arg0 := is Arg1 a contract"}
, { 'IS_PAYABLE', 16#7c, false, false, true, ?GAS(100), [a,a], is_payable, {address}, bool, "Arg0 := is Arg1 a payable address"}
, { 'CREATOR', 16#7d, false, true, true, ?GAS(10), [a], contract_creator, {}, address, "Arg0 := contract creator"}
, { 'ECVERIFY_SECP256K1', 16#7e, false, true, true, ?GAS(1300), [a,a,a,a], ecverify_secp256k1, {bytes, bytes, bytes}, bytes, "Arg0 := ecverify_secp256k1(Hash, Addr, Signature)"}
, { 'ECRECOVER_SECP256K1', 16#7f, false, true, true, ?GAS(1300), [a,a,a], ecrecover_secp256k1, {bytes, bytes}, bytes, "Arg0 := ecrecover_secp256k1(Hash, Signature)"}
, { 'ADDRESS_TO_CONTRACT', 16#80, false, true, true, ?GAS(10), [a,a], address_to_contract, {address}, contract, "Arg0 := Arg1 - A no-op type conversion"}
, { 'BLS12_381_G1_NEG', 16#81, false, true, true, ?GAS(100), [a,a], bls12_381_g1_neg, {tuple}, tuple, "Arg0 := BLS12_381.g1_neg(Arg1) - Negate a G1-value"}
, { 'BLS12_381_G1_NORM', 16#82, false, true, true, ?GAS(100), [a,a], bls12_381_g1_norm, {tuple}, tuple, "Arg0 := BLS12_381.g1_normalize(Arg1) - Normalize a G1-value"}
, { 'BLS12_381_G1_VALID', 16#83, false, true, true, ?GAS(2000), [a,a], bls12_381_g1_valid, {tuple}, bool, "Arg0 := BLS12_381.g1_valid(Arg1) - Check if G1-value is a valid group member"}
, { 'BLS12_381_G1_IS_ZERO', 16#84, false, true, true, ?GAS(30), [a,a], bls12_381_g1_is_zero, {tuple}, bool, "Arg0 := BLS12_381.g1_is_zero(Arg1) - Check if G1-value is zero"}
, { 'BLS12_381_G1_ADD', 16#85, false, true, true, ?GAS(100), [a,a,a], bls12_381_g1_add, {tuple, tuple}, tuple, "Arg0 := BLS12_381.g1_add(Arg1, Arg2) - Add two G1-values"}
, { 'BLS12_381_G1_MUL', 16#86, false, true, true, ?GAS(1000), [a,a,a], bls12_381_g1_mul, {tuple, tuple}, tuple, "Arg0 := BLS12_381.g1_mul(Arg1, Arg2) - Scalar multiplication for a G1-value (Arg1), and an Fr-value"}
, { 'BLS12_381_G2_NEG', 16#87, false, true, true, ?GAS(100), [a,a], bls12_381_g2_neg, {tuple}, tuple, "Arg0 := BLS12_381.g2_neg(Arg1) - Negate a G2-value"}
, { 'BLS12_381_G2_NORM', 16#88, false, true, true, ?GAS(100), [a,a], bls12_381_g2_norm, {tuple}, tuple, "Arg0 := BLS12_381.g2_normalize(Arg1) - Normalize a G2-value"}
, { 'BLS12_381_G2_VALID', 16#89, false, true, true, ?GAS(2000), [a,a], bls12_381_g2_valid, {tuple}, bool, "Arg0 := BLS12_381.g2_valid(Arg1) - Check if G2-value is a valid group member"}
, { 'BLS12_381_G2_IS_ZERO', 16#8a, false, true, true, ?GAS(30), [a,a], bls12_381_g2_is_zero, {tuple}, bool, "Arg0 := BLS12_381.g2_is_zero(Arg1) - Check if G2-value is zero"}
, { 'BLS12_381_G2_ADD', 16#8b, false, true, true, ?GAS(100), [a,a,a], bls12_381_g2_add, {tuple, tuple}, tuple, "Arg0 := BLS12_381.g2_add(Arg1, Arg2) - Add two G2-values"}
, { 'BLS12_381_G2_MUL', 16#8c, false, true, true, ?GAS(1000), [a,a,a], bls12_381_g2_mul, {tuple, tuple}, tuple, "Arg0 := BLS12_381.g2_mul(Arg1, Arg2) - Scalar multiplication for a G2-value (Arg2), and an Fr-value"}
, { 'BLS12_381_GT_INV', 16#8d, false, true, true, ?GAS(100), [a,a], bls12_381_gt_inv, {tuple}, tuple, "Arg0 := BLS12_381.gt_inv(Arg1) - Invert a GT-value"}
, { 'BLS12_381_GT_ADD', 16#8e, false, true, true, ?GAS(100), [a,a,a], bls12_381_gt_add, {tuple, tuple}, tuple, "Arg0 := BLS12_381.gt_add(Arg1, Arg2) - Add two GT-values"}
, { 'BLS12_381_GT_MUL', 16#8f, false, true, true, ?GAS(100), [a,a,a], bls12_381_gt_mul, {tuple, tuple}, tuple, "Arg0 := BLS12_381.gt_mul(Arg1, Arg2) - Multiply two GT-values"}
, { 'BLS12_381_GT_POW', 16#90, false, true, true, ?GAS(2000), [a,a,a], bls12_381_gt_pow, {tuple, tuple}, tuple, "Arg0 := BLS12_381.gt_pow(Arg1, Arg2) - Scalar exponentiation for a GT-value (Arg2), and an Fr-value"}
, { 'BLS12_381_GT_IS_ONE', 16#91, false, true, true, ?GAS(30), [a,a], bls12_381_gt_is_one, {tuple}, bool, "Arg0 := BLS12_381.gt_is_one(Arg1) - Check if a GT value is \"one\""}
, { 'BLS12_381_PAIRING', 16#92, false, true, true, ?GAS(12000), [a,a,a], bls12_381_pairing, {tuple, tuple}, tuple, "Arg0 := BLS12_381.pairing(Arg1, Arg2) - Find the pairing of a G1-value (Arg1) and a G2-value (Arg2)"}
, { 'BLS12_381_MILLER_LOOP', 16#93, false, true, true, ?GAS(5000), [a,a,a], bls12_381_miller_loop, {tuple, tuple}, tuple, "Arg0 := BLS12_381.miller_loop(Arg1, Arg2) - Do the Miller-loop step of pairing for a G1-value (Arg1) and a G2-value (Arg2)"}
, { 'BLS12_381_FINAL_EXP', 16#94, false, true, true, ?GAS(7000), [a,a], bls12_381_final_exp, {tuple}, tuple, "Arg0 := BLS12_381.final_exp(Arg1) - Do the final exponentiation in pairing"}
, { 'BLS12_381_INT_TO_FR', 16#95, false, true, true, ?GAS(30), [a,a], bls12_381_int_to_fr, {tuple}, tuple, "Arg0 := to_montgomery(Arg1) - Convert (Big)integer to montgomery representation (32 bytes)"}
, { 'BLS12_381_INT_TO_FP', 16#96, false, true, true, ?GAS(30), [a,a], bls12_381_int_to_fp, {tuple}, tuple, "Arg0 := to_montgomery(Arg1) - Convert (Big)integer to montgomery representation (48 bytes)"}
, { 'BLS12_381_FR_TO_INT', 16#97, false, true, true, ?GAS(30), [a,a], bls12_381_fr_to_int, {tuple}, tuple, "Arg0 := from_montgomery(Arg1) - Convert montgomery representation (32 bytes) to integer"}
, { 'BLS12_381_FP_TO_INT', 16#98, false, true, true, ?GAS(30), [a,a], bls12_381_fp_to_int, {tuple}, tuple, "Arg0 := from_montgomery(Arg1) - Convert montgomery representation (48 bytes) to integer"}
, { 'AENS_LOOKUP', 16#99, false, false, true, ?GAS(2000), [a,a], aens_lookup, {string}, variant, "Lookup the name of Arg0. Returns option(AENS.name)"}
%% Intentional gap (was oracles)
, { 'AUTH_TX', 16#9b, false, true, true, ?GAS(100 ), [a], auth_tx, {}, variant, "If in GA authentication context return Some(Tx) otherwise None."}
, { 'STR_TO_LIST', 16#9c, false, true, true, ?GAS(100), [a,a], str_to_list, {string}, list, "Arg0 := string converted to list of characters"}
, { 'STR_FROM_LIST', 16#9d, false, true, true, ?GAS(100), [a,a], str_from_list, {list}, string, "Arg0 := string converted from list of characters"}
, { 'STR_TO_UPPER', 16#9e, false, true, true, ?GAS(100), [a,a], str_to_upper, {string}, string, "Arg0 := to_upper(string)"}
, { 'STR_TO_LOWER', 16#9f, false, true, true, ?GAS(100), [a,a], str_to_lower, {string}, string, "Arg0 := to_lower(string)"}
, { 'CHAR_TO_INT', 16#a0, false, true, true, ?GAS(10), [a,a], char_to_int, {char}, int, "Arg0 := integer representation of UTF-8 character"}
, { 'CHAR_FROM_INT', 16#a1, false, true, true, ?GAS(10), [a,a], char_from_int, {int}, variant, "Arg0 := Some(UTF-8 character) from integer if valid, None if not valid."}
, { 'CALL_PGR', 16#a2, true, false, true, ?GAS(100), [a,is,a,a,a,a,a], call_pgr, {contract, string, typerep, typerep, integer, integer, bool}, variant, "Potentially protected remote call. Arg5 is protected flag, otherwise as CALL_GR."}
, { 'CREATE', 16#a3, true, false, true, ?GAS(10000), [a,a,a], create, {contract_bytearray, typerep, integer}, contract, "Deploys a contract with a bytecode Arg1 and value Arg3. The `init` arguments should be placed on the stack and match the type in Arg2. Writes contract address to the top of the accumulator stack. If an account on the resulting address did exist before the call, the `payable` flag will be updated."}
, { 'CLONE', 16#a4, true, false, true, ?GAS(5000), [a,a,a,a], clone, {contract, typerep, integer, bool}, any, "Clones the contract under Arg1 and deploys it with value of Arg3. The `init` arguments should be placed on the stack and match the type in Arg2. Writes contract (or `None` on fail when protected) to the top of the accumulator stack. Does not copy the existing contract's store it will be initialized by a fresh call to the `init` function. If an account on the resulting address did exist before the call, the `payable` flag will be updated."}
, { 'CLONE_G', 16#a5, true, false, true, ?GAS(5000), [a,a,a,a,a], clone_g, {contract, typerep, integer, integer, bool}, any, "Like `CLONE` but additionally limits the gas of the `init` call by Arg3"}
, { 'BYTECODE_HASH', 16#a6, false, true, true, ?GAS(100), [a,a], bytecode_hash, {contract}, variant, "Arg0 := hash of the deserialized contract's bytecode under address given in Arg1 (or `None` on fail). Fails on AEVM contracts and contracts deployed before Iris."}
, { 'FEE', 16#a7, false, true, true, ?GAS(10), [a], fee, {}, integer, "Arg0 := The fee for the current call tx."}
, { 'ADDRESS_TO_BYTES', 16#a8, false, true, true, ?GAS(10), [a, a], addr_to_bytes, {address}, bytes, "Arg0 := the byte representation of the address"}
, { 'POSEIDON', 16#a9, false, true, true, ?GAS(6000), [a, a, a], poseidon, {integer, integer}, integer, "Arg0 := the Poseidon hash of Arg1 and Arg2 - all integers in the BLS12-381 scalar field"}
, { 'MULMOD', 16#aa, false, true, true, ?GAS(10), [a, a, a, a], mulmod, {integer, integer, integer}, integer, "Arg0 := (Arg1 * Arg2) mod Arg3"}
, { 'BAND', 16#ab, false, true, true, ?GAS(10), [a, a, a], bin_and, {integer, integer}, integer, "Arg0 := Arg1 & Arg2"}
, { 'BOR', 16#ac, false, true, true, ?GAS(10), [a, a, a], bin_or, {integer, integer}, integer, "Arg0 := Arg1 | Arg2"}
, { 'BXOR', 16#ad, false, true, true, ?GAS(10), [a, a, a], bin_xor, {integer, integer}, integer, "Arg0 := Arg1 ^ Arg2"}
, { 'BNOT', 16#ae, false, true, true, ?GAS(10), [a, a], bin_not, {integer}, integer, "Arg0 := ~Arg1"}
, { 'BSL', 16#af, false, true, true, ?GAS(10), [a, a, a], bin_sl, {integer, integer}, integer, "Arg0 := Arg1 << Arg2"}
, { 'BSR', 16#b0, false, true, true, ?GAS(10), [a, a, a], bin_sr, {integer, integer}, integer, "Arg0 := Arg1 >> Arg2"}
, { 'BYTES_SPLIT_ANY', 16#b1, false, true, true, ?GAS(10), [a, a, a], bytes_split_any, {bytes, integer}, variant, "Arg0 := bytes_split_any(Arg1, Arg2), where a positive Arg2 is the length of the first chunk, and a negative Arg2 is the length of the second chunk. Returns None if byte array is not long enough."}
, { 'BYTES_SIZE', 16#b2, false, true, true, ?GAS(10), [a, a], bytes_size, {bytes}, integer, "Arg0 := bytes_size(Arg1), returns the number of bytes in the byte array."}
, { 'BYTES_TO_FIXED_SIZE', 16#b3, false, true, true, ?GAS(10), [a, a, a], bytes_to_fixed_size, {bytes, integer}, variant, "Arg0 := bytes_to_fixed_size(Arg1, Arg2), returns Some(Arg1') if byte_size(Arg1) == Arg2, None otherwise. The type of Arg1' is bytes(Arg2) but the value is unchanged"}
, { 'INT_TO_BYTES', 16#b4, false, true, true, ?GAS(10), [a, a, a], int_to_bytes, {integer, integer}, bytes, "Arg0 := turn integer Arg1 into a byte array (big endian) length Arg2 (truncating if not fit)."}
, { 'STR_TO_BYTES', 16#b5, false, true, true, ?GAS(10), [a, a], str_to_bytes, {integer}, bytes, "Arg0 := turn string Arg1 into the corresponding byte array."}
, { 'NETWORK_ID', 16#b6, false, true, true, ?GAS(10), [a], network_id, {}, string, "Arg0 := The network_id of the chain."}
, { 'DBG_LOC', 16#f0, false, true, true, ?GAS(0), [a, a], dbg_loc, {string, integer}, none, "Debug Op: Execution location. Args = {file_name, line_num}" }
, { 'DBG_DEF', 16#f1, false, true, true, ?GAS(0), [a, a], dbg_def, {string, any}, none, "Debug Op: Define a variable. Args = {var_name, register}" }
, { 'DBG_UNDEF', 16#f2, false, true, true, ?GAS(0), [a, a], dbg_undef, {string, any}, none, "Debug Op: Undefine a variable. Args = {var_name, register}" }
, { 'DBG_CONTRACT', 16#f3, false, true, true, ?GAS(0), [a], dbg_contract, {string}, none, "Debug Op: Name the current contract. Args: {contract_name}"}
, { 'DEACTIVATE', 16#fa, false, true, true, ?GAS(10), [], deactivate, {}, none, "Mark the current contract for deactivation."}
, { 'ABORT', 16#fb, true, true, true, ?GAS(10), [a], abort, {string}, none, "Abort execution (dont use all gas) with error message in Arg0."}
, { 'EXIT', 16#fc, true, true, true, ?GAS(10), [a], exit, {string}, none, "Abort execution (use upp all gas) with error message in Arg0."}
, { 'NOP', 16#fd, false, true, true, ?GAS(1), [], nop, {}, none, "The no op. does nothing."}
%% FUNCTION 16#fe "Function declaration and entrypoint."
%% EXTEND 16#ff "Reserved for future extensions beyond one byte opcodes."
].
generate_header_file(Filename, Ops) ->
{ok, File} = file:open(Filename, [write]),
Defines = lists:flatten([gen_defines(Op) || Op <- Ops]),
io:format(File, "~s", [prelude("Provides opcode defines.\n")]),
io:format(File, "%% FATE opcodes\n~s", [Defines]),
io:format(File, "~s",
["-define('FUNCTION' , 16#fe).\n"
"-define('EXTEND' , 16#ff).\n\n"]),
file:close(File).
generate_opcodes_ops(Modulename, HrlFile, SrcDir, Ops) ->
Filename = SrcDir ++ atom_to_list(Modulename) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Mnemonic = lists:flatten([gen_mnemonic(Op) || Op <- Ops]),
ToOp = lists:flatten([gen_m_to_op(Op) || Op <- Ops]),
Args = lists:flatten([gen_args(Op) || Op <- Ops]),
EndBB = lists:flatten([gen_bb(Op) || Op <- Ops]),
InAuth = lists:flatten([gen_in_auth(Op) || Op <- Ops]),
Offchain = lists:flatten([gen_allowed_offchain(Op) || Op <- Ops]),
GasCost = lists:flatten([gen_gas_cost(Op) || Op <- Ops]),
io:format(File, "~s", [prelude("Provides opcode primitives.\n")]),
io:format(File, "~s", [ops_exports(Modulename, HrlFile,
["args/1\n"
" , end_bb/1\n"
" , in_auth/1\n"
" , allowed_offchain/1\n"
" , mnemonic/1\n"
" , m_to_op/1\n"
" , gas_cost/1\n"
])]),
io:format(File, "%% FATE mnemonics\n~s", [Mnemonic]),
io:format(File, "mnemonic(Op) -> exit({bad_opcode, Op}).\n\n", []),
io:format(File, "%% FATE opcodes\n~s", [ToOp]),
io:format(File, "m_to_op(M) -> exit({bad_mnemonic, M}).\n\n", []),
io:format(File, "%% FATE numbers of args to op.\n~s", [Args]),
io:format(File, "args(Op) -> exit({bad_opcode, Op}).\n\n", []),
io:format(File, "%% Does FATE Op end a Basic Block?\n~s", [EndBB]),
io:format(File, "end_bb(_) -> false.\n\n", []),
io:format(File, "%% Is FATE Op allowed in GA Authentication context?\n~s", [InAuth]),
io:format(File, "in_auth(_) -> false.\n\n", []),
io:format(File, "%% Is FATE Op allowed in a state channel offchain context?\n~s", [Offchain]),
io:format(File, "allowed_offchain(_) -> false.\n\n", []),
io:format(File, "%% Base cost of operation\n~s", [GasCost]),
io:format(File, "gas_cost(Op) -> exit({bad_opcode, Op}).\n\n", []),
file:close(File).
generate_code_ops(Modulename, SrcDir, Ops) ->
Filename = SrcDir ++ atom_to_list(Modulename) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Types = lists:flatten([gen_type(Op) || Op <- Ops]),
TypeExports = lists:flatten([gen_type_exports(Op) || Op <- Ops]),
[#{type_name := FirstType} | RestOfOps] = Ops,
FateTypes = lists:flatten([gen_fate_code_type(Op) || Op <- RestOfOps]),
ConstructorExports = lists:flatten([gen_constructor_exports(Op) || Op <- Ops]),
Constructors = lists:flatten([gen_constructors(Op) || Op <- Ops]),
io:format(File, "~s", [prelude(" Provide constructor functuions for "
"Fate instructions.\n%%% Provide types"
" and documentation for Fate "
"instructions.\n")]),
io:format(File, "-module(~w).\n\n", [Modulename]),
io:format(File, "-include_lib(\"gmbytecode/include/gmb_fate_data.hrl\").\n\n"
"-define(i(__X__), {immediate, __X__ }).\n\n"
"-type fate_arg_immediate(T) :: {immediate, T}.\n"
"-type fate_arg_var() :: {var, integer()}.\n"
"-type fate_arg_arg() :: {arg, integer()}.\n"
"-type fate_arg_stack() :: {stack, 0}.\n"
"-type fate_arg() :: fate_arg_immediate()\n"
" | fate_arg_var()\n"
" | fate_arg_arg()\n"
" | fate_arg_stack().\n\n"
"-type fate_arg_immediate() :: {immediate, gmb_fate_data:fate_type()}.\n"
, []),
io:format(File, "~s", [Types]),
io:format(File, "-type fate_code() :: ~s\n~s .\n\n",
[FirstType, FateTypes]),
io:format(File, "-export_type([ fate_code/0\n~s ]).\n\n", [TypeExports]),
io:format(File, "-export([ foo/0\n~s ]).\n\n", [ConstructorExports]),
io:format(File, "~s\n", [Constructors]),
io:format(File, "foo() -> \"A temp hack.\".\n", []),
file:close(File).
gen_type(#{type_name := TypeName, type := Type}) ->
lists:flatten(io_lib:format("-type ~-29s :: ~s.\n",
[TypeName, Type])).
gen_fate_code_type(#{type_name := TypeName}) ->
lists:flatten(io_lib:format(" | ~s\n", [TypeName])).
gen_type_exports(#{type_name := TypeName}) ->
lists:flatten(io_lib:format(" , ~s/0\n", [TypeName--"()"])).
gen_constructor_exports(#{constructor_type := Function}) ->
lists:flatten(io_lib:format(" , ~s\n", [Function])).
gen_constructors(#{constructor := Function, format := [],
type_name := Type, opname := Name}) ->
lists:flatten(io_lib:format("-spec ~s() -> ~s.\n"
"~s() ->\n"
" ~w.\n\n",
[Function, Type, Function, Name]));
gen_constructors(#{constructor := Function, format := ArgSpec,
type_name := Type, opname := Name}) ->
ArgTypeSpecs = gen_arg_type_specs(ArgSpec),
Args = gen_arg_names(0, ArgSpec),
UseArgs = gen_arg_uses(0, ArgSpec),
lists:flatten(io_lib:format("-spec ~s(~s) -> ~s.\n"
"~s(~s) ->\n"
" {~w, ~s}.\n\n",
[Function, ArgTypeSpecs, Type,
Function, Args, Name, UseArgs])).
gen_arg_type_specs([]) -> [];
gen_arg_type_specs([a]) -> "fate_arg()";
gen_arg_type_specs([is]) -> "gmb_fate_data:fate_string()";
gen_arg_type_specs([ii]) -> "gmb_fate_data:fate_integer()";
gen_arg_type_specs([li]) -> "[gmb_fate_data:fate_integer()]";
gen_arg_type_specs([t]) -> "gmb_fate_data:fate_type_type()";
gen_arg_type_specs([a | Args]) -> "fate_arg(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([is | Args]) -> "gmb_fate_data:fate_string(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([ii | Args]) -> "gmb_fate_data:fate_integer(), " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([li | Args]) -> "[gmb_fate_data:fate_integer()], " ++ gen_arg_type_specs(Args);
gen_arg_type_specs([t | Args]) -> "gmb_fate_data:fate_type_type(), " ++ gen_arg_type_specs(Args).
gen_arg_names(_, []) ->
[];
gen_arg_names(N, [_]) -> io_lib:format("Arg~w", [N]);
gen_arg_names(N, [_|Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_names(N+1, Args).
gen_arg_uses(_, []) ->
[];
gen_arg_uses(N, [a]) -> io_lib:format("Arg~w", [N]);
gen_arg_uses(N, [is]) -> io_lib:format("{immediate, Arg~w}", [N]);
gen_arg_uses(N, [ii]) -> io_lib:format("{immediate, Arg~w}", [N]);
gen_arg_uses(N, [li]) -> io_lib:format("{immediate, Arg~w}", [N]);
gen_arg_uses(N, [t]) -> io_lib:format("Arg~w", [N]);
gen_arg_uses(N, [a | Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [is | Args]) ->
io_lib:format("{immediate, Arg~w}, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [ii | Args]) ->
io_lib:format("{immediate, Arg~w}, ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [li | Args]) ->
io_lib:format("[{immediate, I} || I <- Arg~w], ", [N]) ++ gen_arg_uses(N+1, Args);
gen_arg_uses(N, [t | Args]) ->
io_lib:format("Arg~w, ", [N]) ++ gen_arg_uses(N+1, Args).
ops_exports(Module, HrlFile, Exports) ->
lists:flatten(io_lib:format(
"-module(~w).\n\n"
"-export([ ~s ]).\n\n"
"-include_lib(\"gmbytecode/" ++ HrlFile ++"\").\n\n"
"%%====================================================================\n"
"%% API\n"
"%%====================================================================\n",
[Module, Exports])).
gen_mnemonic(#{opname := Name, macro := Macro}) ->
lists:flatten(io_lib:format("mnemonic(~24s) -> ~24w ;\n",
[Macro, Name])).
gen_m_to_op(#{opname := Name, macro := Macro}) ->
lists:flatten(io_lib:format("m_to_op(~24w) -> ~24s ;\n",
[Name, Macro])).
gen_args(#{macro := Macro, arity := Arity}) ->
lists:flatten(io_lib:format("args(~24s) -> ~2w ;\n",
[Macro, Arity])).
gen_bb(#{macro := Macro, end_bb := EndBB}) ->
lists:flatten(io_lib:format("end_bb(~24s) -> ~w ;\n",
[Macro, EndBB])).
gen_in_auth(#{macro := Macro, in_auth := InAuth}) ->
lists:flatten(io_lib:format("in_auth(~24s) -> ~w ;\n",
[Macro, InAuth])).
gen_allowed_offchain(#{macro := Macro, offchain := Offchain}) ->
lists:flatten(io_lib:format("allowed_offchain(~24s) -> ~w ;\n",
[Macro, Offchain])).
gen_gas_cost(#{macro := Macro, gas := Gas}) ->
lists:flatten(io_lib:format("gas_cost(~24s) -> ~w ;\n",
[Macro, Gas])).
prelude(Doc) ->
"%%%-------------------------------------------------------------------\n"
"%%% @copyright (C) 2019, Aeternity Anstalt\n"
"%%%\n"
"%%% === === N O T E : This file is generated do not edit. === ===\n"
"%%%\n"
"%%% Source is in gmb_fate_generate_ops.erl\n"
"%%% @doc\n"
"%%% "++Doc++
"%%% @end\n"
"%%%-------------------------------------------------------------------\n\n".
gen_defines(#{opname := Name, opcode := OpCode}) ->
lists:flatten(io_lib:format("-define(~-29w, 16#~2.16.0b).\n", [Name, OpCode])).
gen([]) ->
[];
gen([{OpName, OpCode, EndBB, InAuth, AllowedOffchain, Gas, FateFormat, Constructor, ArgTypes, ResType, Doc} | Rest]) ->
Arity = length(FateFormat),
Name = atom_to_list(OpName),
LowerName = string:to_lower(Name),
TypeName = "fate_" ++ LowerName ++ "()",
Macro = "?" ++ Name,
Type = case FateFormat of
[] -> io_lib:format("~w", [OpName]);
Args ->
io_lib:format("{~w, ~s}", [OpName, expand_types(Args)])
end,
ConstructorType = atom_to_list(Constructor) ++ "/" ++ io_lib:format("~w", [Arity]),
[#{ opname => OpName
, opcode => OpCode
, arity => Arity
, end_bb => EndBB
, in_auth => InAuth
, offchain => AllowedOffchain
, format => FateFormat
, macro => Macro
, type_name => TypeName
, doc => Doc
, gas => Gas
, type => Type
, constructor => Constructor
, constructor_type => ConstructorType
, arg_types => ArgTypes
, res_type => ResType
}| gen(Rest)].
expand_types([]) -> "";
expand_types([T]) -> expand_type(T);
expand_types([T|Ts]) ->expand_type(T) ++ ", " ++ expand_types(Ts).
expand_type(a) -> "fate_arg()";
expand_type(is) -> "fate_arg_immediate(gmb_fate_data:fate_string())";
expand_type(ii) -> "fate_arg_immediate(gmb_fate_data:fate_integer())";
expand_type(li) -> "fate_arg_immediate([gmb_fate_data:fate_integer()])";
expand_type(t) -> "gmb_fate_data:fate_type_type()".
generate_scanner(TemplateFile, Outfile, Path, Ops) ->
{ok, Template} = file:read_file(filename:join(Path,TemplateFile)),
Tokens = lists:flatten([gen_token(Op) || Op <- Ops]),
NewFile = insert_tokens_in_template(Template, Tokens),
file:write_file(filename:join(Path, Outfile), NewFile).
gen_token(#{opname := OpName}) ->
Name = atom_to_list(OpName),
io_lib:format("~-28s: {token, {mnemonic, TokenLine, ~w}}.\n",
[Name, OpName]).
insert_tokens_in_template(<<"%% ###REPLACEWITHOPTOKENS###", Rest/binary >>, Tokens) ->
[Tokens, Rest];
insert_tokens_in_template(<<"%%% ###REPLACEWITHNOTE###", Rest/binary >>, Tokens) ->
[
"%%%\n"
"%%% === === N O T E : This file is generated do not edit. === ===\n"
"%%%\n"
"%%% Source is in gmb_fate_generate_ops.erl\n"
"%%% and gmb_fate_asm_scan.template"
| insert_tokens_in_template(Rest, Tokens)];
insert_tokens_in_template(<<B,Rest/binary>>, Tokens) ->
[B|insert_tokens_in_template(Rest, Tokens)].
gen_asm_pp(Module, Path, Ops) ->
Filename = filename:join(Path, atom_to_list(Module)) ++ ".erl",
{ok, File} = file:open(Filename, [write]),
Formats = lists:flatten([gen_format(Op)++"\n" || Op <- Ops]),
io:format(File, "~s", [prelude(" Provide pretty printing functuions for "
"Fate instructions.\n")]),
io:format(File, "-module(~w).\n\n", [Module]),
io:format(File,
"-export([format_op/2]).\n\n"
"format_arg(li, {immediate, LI}) ->\n"
" gmb_fate_data:format(LI);\n"
"format_arg(_, {immediate, I}) ->\n"
" gmb_fate_data:format(I);\n"
"format_arg(a, {arg, N}) -> io_lib:format(\"arg~~p\", [N]);\n"
"format_arg(a, {var, N}) when N < 0 -> io_lib:format(\"store~~p\", [-N]);\n"
"format_arg(a, {var, N}) -> io_lib:format(\"var~~p\", [N]);\n"
"format_arg(a, {stack, 0}) -> \"a\".\n\n"
"lookup(Name, Symbols) ->\n"
" maps:get(Name, Symbols, io_lib:format(\"~~p\",[Name])).\n\n"
"~s"
, [Formats]),
io:format(File, "format_op(Op, _Symbols) -> io_lib:format(\";; Bad Op: ~~w\\n\", [Op]).\n", []),
file:close(File).
gen_format(#{opname := Name}) when (Name =:= 'CALL_R') ->
io_lib:format("format_op({~w, {immediate, Contract}, {immediate, Function}, ArgType, RetType, Value}, Symbols) ->\n"
" [\"~s \", lookup(Contract, Symbols), \".\", "
"lookup(Function, Symbols), \" \", "
"format_arg(a, ArgType), \" \", "
"format_arg(a, RetType), \" \", "
"format_arg(a, Value)];\n"
"format_op({~w, Contract, {immediate, Function}, ArgType, RetType, Value}, Symbols) ->\n"
"[\"~s \", format_arg(a, Contract), \".\", "
"lookup(Function, Symbols), \" \", "
"format_arg(a, ArgType), \" \", "
"format_arg(a, RetType), \" \", "
"format_arg(a, Value)];\n",
[Name, atom_to_list(Name), Name, atom_to_list(Name)]);
gen_format(#{opname := Name}) when (Name =:= 'CALL_GR') ->
io_lib:format("format_op({~w, {immediate, Contract}, {immediate, Function}, ArgType, RetType, Value, Gas}, Symbols) ->\n"
" [\"~s \", lookup(Contract, Symbols), \".\", "
"lookup(Function, Symbols), \" \", "
"format_arg(a, ArgType), \" \", "
"format_arg(a, RetType), \" \", "
"format_arg(a, Value), \" \", "
"format_arg(a, Gas)];\n"
"format_op({~w, Contract, {immediate, Function}, ArgType, RetType, Value, Gas}, Symbols) ->\n"
"[\"~s \", format_arg(a, Contract), \".\", "
"lookup(Function, Symbols), \" \", "
"format_arg(a, ArgType), \" \", "
"format_arg(a, RetType), \" \", "
"format_arg(a, Value), \" \", "
"format_arg(a, Gas)];\n",
[Name, atom_to_list(Name), Name, atom_to_list(Name)]);
gen_format(#{opname := Name, format := []}) ->
io_lib:format("format_op(~w, _) -> [\"~s\"];", [Name, atom_to_list(Name)]);
gen_format(#{opname := Name, format := Args}) ->
NameAsString = atom_to_list(Name),
case Args of
[T0] ->
io_lib:format(
"format_op({~w, Arg0}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0)];",
[Name, NameAsString, T0]);
[T0, T1] ->
io_lib:format(
"format_op({~w, Arg0, Arg1}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1)];",
[Name, NameAsString, T0, T1]);
[T0, T1, T2] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2)];",
[Name, NameAsString, T0, T1, T2]);
[T0, T1, T2, T3] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3)];",
[Name, NameAsString, T0, T1, T2, T3]);
[T0, T1, T2, T3, T4] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4)];",
[Name, NameAsString, T0, T1, T2, T3, T4]);
[T0, T1, T2, T3, T4, T5] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5]);
[T0, T1, T2, T3, T4, T5, T6] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5),"
"\" \", format_arg(~w, Arg6)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5, T6]);
[T0, T1, T2, T3, T4, T5, T6, T7] ->
io_lib:format(
"format_op({~w, Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7}, _) ->\n"
" [\"~s \", format_arg(~w, Arg0), "
"\" \", format_arg(~w, Arg1),"
"\" \", format_arg(~w, Arg2),"
"\" \", format_arg(~w, Arg3),"
"\" \", format_arg(~w, Arg4),"
"\" \", format_arg(~w, Arg5),"
"\" \", format_arg(~w, Arg6),"
"\" \", format_arg(~w, Arg7)];",
[Name, NameAsString, T0, T1, T2, T3, T4, T5, T6, T7])
end.
test_asm_generator(Filename) ->
{ok, File} = file:open(Filename, [write]),
Instructions = lists:flatten([gen_instruction(Op)++"\n" || Op <- get_ops()]),
io:format(File,
";; CONTRACT all_instructions\n\n"
";; Dont expect this contract to typecheck or run.\n"
";; Just used to check assembler rountrip of all instruction.\n\n"
"FUNCTION foo () : {tuple, []}\n"
"~s"
, [Instructions]),
io:format(File, " RETURNR ()\n", []),
file:close(File).
gen_instruction(#{opname := Name, format := []}) ->
io_lib:format(" ~s\n", [Name]);
gen_instruction(#{opname := Name, format := ArgTypes}) ->
Args = lists:flatten(lists:join(" ", [gen_arg(A) || A <- ArgTypes])),
I = io_lib:format(" ~s ~s\n", [Name, Args]),
I.
%% This should be done with a Quick Check generator...
gen_arg(a) -> any_arg();
gen_arg(is) -> "foo";
gen_arg(ii) -> gen_int();
gen_arg(li) -> "[1, 2, 3]";
gen_arg(t) -> "integer".
any_arg() ->
element(rand:uniform(5), {"a", stack_arg(), var_arg(), arg_arg(), imm_arg()}).
stack_arg() -> "a".
arg_arg() -> "arg" ++ integer_to_list(rand:uniform(256)-1).
var_arg() -> "var" ++ integer_to_list(rand:uniform(256)-1).
imm_arg() ->
case rand:uniform(15) of
1 -> gen_int();
2 -> gen_int();
3 -> gen_int();
4 -> gen_int();
5 -> gen_int();
6 -> gen_int();
7 -> gen_int();
8 -> gen_address();
9 -> gen_boolean();
10 -> gen_string();
11 -> gen_map();
12 -> gen_list();
13 -> gen_bits();
14 -> gen_tuple();
15 -> gen_variant()
end.
gen_key() ->
case rand:uniform(15) of
1 -> gen_int();
2 -> gen_int();
3 -> gen_int();
4 -> gen_int();
5 -> gen_int();
6 -> gen_int();
7 -> gen_int();
8 -> gen_address();
9 -> gen_boolean();
10 -> gen_string();
11 -> gen_string();
12 -> gen_list();
13 -> gen_bits();
14 -> gen_tuple();
15 -> gen_variant()
end.
gen_boolean() ->
element(rand:uniform(2), {"true", "false"}).
gen_int() ->
element(rand:uniform(4),
{ integer_to_list(rand:uniform(round(math:pow(10,40))))
, integer_to_list(rand:uniform(10))
, integer_to_list(rand:uniform(100))
, io_lib:format("0x~.16b",[rand:uniform(round(math:pow(10,10)))])}).
gen_address() -> "#nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv".
gen_string() -> "\"foo\"".
gen_map() -> "{ " ++ gen_key() ++ " => " ++ imm_arg() ++ "}".
gen_list() ->
case rand:uniform(4) of
1 -> "[]";
2 -> "[" ++ lists:join(", ", gen_list_elements()) ++ " ]";
3 -> "[ " ++ imm_arg() ++ " ]";
4 -> "[ " ++ imm_arg() ++ ", " ++ imm_arg() ++ " ]"
end.
%% Not type correct.
gen_list_elements() ->
case rand:uniform(3) of
1 -> [imm_arg() | gen_list_elements()];
2 -> [];
3 -> [imm_arg()]
end.
gen_bits() ->
element(rand:uniform(3),
{"<>"
,"!<>"
, "101010"}).
gen_tuple() ->
case rand:uniform(3) of
1 -> "()";
2 -> "(42)";
3 -> "(" ++ imm_arg() ++ ")"
end.
gen_variant() ->
case rand:uniform(3) of
1 -> "(| 5 | 2 | (1, \"foo\", ()) |)";
2 -> "(| 2 | 1 | ( " ++ imm_arg() ++ " ) |)";
3 -> "(| 2 | 0 | ( " ++ imm_arg() ++ ", " ++ imm_arg() ++ " ) |)"
end.

View File

@ -1,220 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2019, Aeternity Anstalt
%%% @doc
%%% Functions for manipulating FATE maps. In particular for mediating
%%% between plain map values (represented by Erlang maps) and maps that are
%%% fully or partially saved in the contract store.
%%% @end
%%% -------------------------------------------------------------------
-module(gmb_fate_maps).
-vsn("3.4.1").
-include("gmb_fate_data.hrl").
-export([ allocate_store_maps/2
, has_store_maps/1
, unfold_store_maps/2
, refcount/1
, refcount_zero/0
, refcount_diff/2
, refcount_union/1
, refcount_union/2
, no_used_ids/0 ]).
-export_type([used_ids/0, maps/0, refcount/0]).
%% Size in bytes of serialization of a map for which we turn it into a store
%% map. It's not worth turning small maps into store maps.
%% Under consensus!
-ifdef(TEST).
-define(STORE_MAP_THRESHOLD, 0).
-else.
-define(STORE_MAP_THRESHOLD, 100).
-endif.
-type fate_value() :: gmb_fate_data:fate_type().
-type fate_value_or_tombstone() :: fate_value() | ?FATE_MAP_TOMBSTONE.
-type id() :: integer().
-type used_ids() :: list(id()).
-type maps() :: #{ id() => gmb_fate_data:fate_map() | gmb_fate_data:fate_store_map() }.
%% -- Allocating store maps --------------------------------------------------
-spec allocate_store_maps(used_ids(), [fate_value_or_tombstone()]) -> {[fate_value_or_tombstone()], maps()}.
allocate_store_maps(Used, Vals) ->
{_Used, Vals1, Maps} = allocate_store_maps_l(Used, Vals, #{}),
{Vals1, Maps}.
allocate_store_maps(Used, ?FATE_MAP_TOMBSTONE = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_TRUE = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_FALSE = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_UNIT = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_BITS(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_BYTES(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_ADDRESS(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_CONTRACT(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_ORACLE(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_ORACLE_Q(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_CHANNEL(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_TYPEREP(_) = Val, Maps) -> {Used, Val, Maps};
allocate_store_maps(Used, Val, Maps) when ?IS_FATE_INTEGER(Val) -> {Used, Val, Maps};
allocate_store_maps(Used, Val, Maps) when ?IS_FATE_STRING(Val) -> {Used, Val, Maps};
allocate_store_maps(Used, ?FATE_TUPLE(Val), Maps) ->
{Used1, Vals, Maps1} = allocate_store_maps_l(Used, tuple_to_list(Val), Maps),
{Used1, ?FATE_TUPLE(list_to_tuple(Vals)), Maps1};
allocate_store_maps(Used, Val, Maps) when ?IS_FATE_LIST(Val) ->
{Used1, Vals, Maps1} = allocate_store_maps_l(Used, ?FATE_LIST_VALUE(Val), Maps),
{Used1, ?MAKE_FATE_LIST(Vals), Maps1};
allocate_store_maps(Used, ?FATE_VARIANT(Arities, Tag, Vals), Maps) ->
{Used1, Vals1, Maps1} = allocate_store_maps_l(Used, tuple_to_list(Vals), Maps),
{Used1, ?FATE_VARIANT(Arities, Tag, list_to_tuple(Vals1)), Maps1};
allocate_store_maps(Used, Val, Maps) when ?IS_FATE_MAP(Val) ->
{Used1, KVs, Maps1} = allocate_store_maps_m(Used, ?FATE_MAP_VALUE(Val), Maps),
Val1 = ?MAKE_FATE_MAP(KVs),
case byte_size(gmb_fate_encoding:serialize(Val1)) < ?STORE_MAP_THRESHOLD of
true -> {Used1, Val1, Maps1};
false ->
{Id, Used2} = next_id(Used1),
{Used2, ?FATE_STORE_MAP(#{}, Id), Maps1#{Id => Val1}}
end;
allocate_store_maps(Used, ?FATE_STORE_MAP(Cache, _Id) = Val, Maps) when Cache =:= #{} ->
{Used, Val, Maps};
allocate_store_maps(Used, ?FATE_STORE_MAP(Cache, Id), Maps) ->
{NewId, Used1} = next_id(Used),
{Used2, Cache1, Maps1} = allocate_store_maps_m(Used1, Cache, Maps),
{Used2, ?FATE_STORE_MAP(#{}, NewId), Maps1#{NewId => ?FATE_STORE_MAP(Cache1, Id)}}.
allocate_store_maps_l(Used, [], Maps) -> {Used, [], Maps};
allocate_store_maps_l(Used, [H | T], Maps) ->
{Used1, H1, Maps1} = allocate_store_maps(Used, H, Maps),
{Used2, T1, Maps2} = allocate_store_maps(Used1, T, Maps1),
{Used2, [H1 | T1], Maps2}.
allocate_store_maps_m(Used, Val, Maps) ->
maps:fold(fun(K, V, {Us, M, Ms}) ->
{Us1, V1, Ms1} = allocate_store_maps(Us, V, Ms),
{Us1, M#{ K => V1 }, Ms1}
end, {Used, #{}, Maps}, Val).
%% -- Unfolding store maps ---------------------------------------------------
-type unfold_fun() :: fun((id()) -> gmb_fate_data:fate_map()).
-spec unfold_store_maps(unfold_fun(), fate_value_or_tombstone()) -> fate_value_or_tombstone().
unfold_store_maps(_Unfold, ?FATE_MAP_TOMBSTONE = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_TRUE = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_FALSE = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_UNIT = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_BITS(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_BYTES(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_ADDRESS(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_CONTRACT(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_ORACLE(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_ORACLE_Q(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_CHANNEL(_) = Val) -> Val;
unfold_store_maps(_Unfold, ?FATE_TYPEREP(_) = Val) -> Val;
unfold_store_maps(_Unfold, Val) when ?IS_FATE_INTEGER(Val) -> Val;
unfold_store_maps(_Unfold, Val) when ?IS_FATE_STRING(Val) -> Val;
unfold_store_maps(Unfold, ?FATE_TUPLE(Val)) ->
Vals = unfold_store_maps_l(Unfold, tuple_to_list(Val)),
?FATE_TUPLE(list_to_tuple(Vals));
unfold_store_maps(Unfold, Val) when ?IS_FATE_LIST(Val) ->
?MAKE_FATE_LIST(unfold_store_maps_l(Unfold, ?FATE_LIST_VALUE(Val)));
unfold_store_maps(Unfold, ?FATE_VARIANT(Arities, Tag, Vals)) ->
Vals1 = unfold_store_maps_l(Unfold, tuple_to_list(Vals)),
?FATE_VARIANT(Arities, Tag, list_to_tuple(Vals1));
unfold_store_maps(Unfold, Val) when ?IS_FATE_MAP(Val) ->
?MAKE_FATE_MAP(unfold_store_maps_m(Unfold, ?FATE_MAP_VALUE(Val)));
unfold_store_maps(Unfold, ?FATE_STORE_MAP(Cache, Id)) ->
StoreMap = Unfold(Id),
maps:fold(fun write_cache/3, unfold_store_maps(Unfold, StoreMap),
unfold_store_maps_m(Unfold, Cache)).
unfold_store_maps_l(Unfold, Vals) ->
[ unfold_store_maps(Unfold, Val) || Val <- Vals ].
unfold_store_maps_m(Unfold, Val) ->
maps:map(fun(_, V) -> unfold_store_maps(Unfold, V) end, Val).
write_cache(Key, ?FATE_MAP_TOMBSTONE, Map) ->
maps:remove(Key, Map);
write_cache(Key, Val, Map) ->
Map#{ Key => Val }.
%% -- Reference counting -----------------------------------------------------
-type refcount() :: #{id() => integer()}.
-spec refcount_zero() -> refcount().
refcount_zero() -> #{}.
-spec refcount_diff(refcount(), refcount()) -> refcount().
refcount_diff(New, Old) ->
maps:fold(fun(K, N, C) -> maps:update_with(K, fun(M) -> M - N end, -N, C) end,
New, Old).
-spec refcount_union([refcount()]) -> refcount().
refcount_union(Counts) -> lists:foldl(fun refcount_union/2, #{}, Counts).
-spec refcount_union(refcount(), refcount()) -> refcount().
refcount_union(A, B) ->
maps:fold(fun(K, N, C) -> maps:update_with(K, fun(M) -> M + N end, N, C) end,
B, A).
-spec has_store_maps(fate_value()) -> boolean().
has_store_maps(Val) ->
refcount_zero() /= refcount(Val).
-spec refcount(fate_value()) -> refcount().
refcount(Val) -> refcount(Val, #{}).
-spec refcount(fate_value_or_tombstone(), refcount()) -> refcount().
refcount(?FATE_MAP_TOMBSTONE, Count) -> Count;
refcount(?FATE_TRUE, Count) -> Count;
refcount(?FATE_FALSE, Count) -> Count;
refcount(?FATE_UNIT, Count) -> Count;
refcount(?FATE_BITS(_), Count) -> Count;
refcount(?FATE_BYTES(_), Count) -> Count;
refcount(?FATE_ADDRESS(_), Count) -> Count;
refcount(?FATE_CONTRACT(_), Count) -> Count;
refcount(?FATE_ORACLE(_), Count) -> Count;
refcount(?FATE_ORACLE_Q(_), Count) -> Count;
refcount(?FATE_CHANNEL(_), Count) -> Count;
refcount(?FATE_TYPEREP(_), Count) -> Count;
refcount(Val, Count) when ?IS_FATE_INTEGER(Val) -> Count;
refcount(Val, Count) when ?IS_FATE_STRING(Val) -> Count;
refcount(?FATE_TUPLE(Val), Count) ->
refcount_l(tuple_to_list(Val), Count);
refcount(Val, Count) when ?IS_FATE_LIST(Val) ->
refcount_l(?FATE_LIST_VALUE(Val), Count);
refcount(?FATE_VARIANT(_Arities, _Tag, Vals), Count) ->
refcount_l(tuple_to_list(Vals), Count);
refcount(Val, Count) when ?IS_FATE_MAP(Val) ->
refcount_m(?FATE_MAP_VALUE(Val), Count);
refcount(?FATE_STORE_MAP(Cache, Id), Count) ->
refcount_m(Cache, maps:update_with(Id, fun(N) -> N + 1 end, 1, Count)).
refcount_l(Vals, Count) ->
lists:foldl(fun refcount/2, Count, Vals).
refcount_m(Val, Count) ->
%% No maps in map keys
maps:fold(fun(_, ?FATE_MAP_TOMBSTONE, C) -> C;
(_, V, C) -> refcount(V, C) end, Count, Val).
%% -- Map id allocation ------------------------------------------------------
-spec no_used_ids() -> used_ids().
no_used_ids() -> [].
-spec next_id(used_ids()) -> {id(), used_ids()}.
next_id(UsedIds) ->
next_id(UsedIds, 0, []).
next_id(Used, J, Acc) when Used == []; J < hd(Used) ->
{J, lists:reverse(Acc) ++ [J | Used]};
next_id([I | Used], I, Acc) ->
next_id(Used, I + 1, [I | Acc]);
next_id([I | Used], J, Acc) when J > I ->
next_id(Used, J, [I | Acc]).

View File

@ -1,332 +0,0 @@
-module(gmb_heap).
-vsn("3.4.1").
-export([ to_binary/1
, to_binary/2
, from_heap/3
, from_binary/2
, from_binary/3
, maps_with_next_id/1
, set_next_id/2
, heap_fragment/3
, heap_value/3
, heap_value/4
, heap_value_pointer/1
, heap_value_maps/1
, heap_value_offset/1
, heap_value_heap/1
, heap_value_byte_size/1
, heap_fragment_maps/1
, heap_fragment_offset/1
, heap_fragment_heap/1
]).
-export_type([binary_value/0, heap_value/0, offset/0, heap_fragment/0]).
-include_lib("gmbytecode/include/gmb_typerep_def.hrl").
-include_lib("gmbytecode/include/gmb_heap.hrl").
-type word() :: non_neg_integer().
-type pointer() :: word().
-opaque heap_fragment() :: #heap{}.
-type offset() :: non_neg_integer().
-type binary_value() :: binary().
-type heap_value() :: {pointer(), heap_fragment()}.
-spec maps_with_next_id(heap_fragment()) -> #maps{}.
%% Create just a maps value, don't keep rest of Heap
maps_with_next_id(#heap{maps = #maps{next_id = N}}) ->
#maps{ next_id = N }.
-spec set_next_id(heap_fragment(), non_neg_integer()) -> heap_fragment().
set_next_id(Heap, N) ->
Heap#heap{ maps = Heap#heap.maps#maps{ next_id = N } }.
%% -- data type heap_fragment
-spec heap_fragment(binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment().
heap_fragment(Heap) ->
heap_fragment(#maps{ next_id = 0 }, 0, Heap).
-spec heap_fragment(#maps{}, offset(),
binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_fragment().
heap_fragment(Maps, Offset, Heap) ->
#heap{maps = Maps, offset = Offset, heap = Heap}.
-spec heap_fragment_maps(heap_fragment()) -> #maps{}.
heap_fragment_maps(#heap{maps = Maps}) ->
Maps.
-spec heap_fragment_offset(heap_fragment()) -> offset().
heap_fragment_offset(#heap{offset = Offs}) ->
Offs.
-spec heap_fragment_heap(heap_fragment()) -> binary() | #{non_neg_integer() => non_neg_integer()}.
heap_fragment_heap(#heap{heap = Heap}) ->
Heap.
%% -- data type heap_value
-spec heap_value(#maps{}, pointer(),
binary() | #{non_neg_integer() => non_neg_integer()}) -> heap_value().
heap_value(Maps, Ptr, Heap) ->
heap_value(Maps, Ptr, Heap, 0).
-spec heap_value(#maps{}, pointer(),
binary() | #{non_neg_integer() => non_neg_integer()}, offset()) -> heap_value().
heap_value(Maps, Ptr, Heap, Offs) ->
{Ptr, heap_fragment(Maps, Offs, Heap)}.
-spec heap_value_pointer(heap_value()) -> pointer().
heap_value_pointer({Ptr, _}) -> Ptr.
-spec heap_value_maps(heap_value()) -> #maps{}.
heap_value_maps({_, Heap}) -> Heap#heap.maps.
-spec heap_value_offset(heap_value()) -> offset().
heap_value_offset({_, Heap}) -> Heap#heap.offset.
-spec heap_value_heap(heap_value()) ->
binary() | #{non_neg_integer() => non_neg_integer()}.
heap_value_heap({_, Heap}) -> Heap#heap.heap.
%% -- Byte size of a heap value ----------------------------------------------
-spec heap_value_byte_size(heap_value()) -> non_neg_integer().
heap_value_byte_size({_, Heap}) ->
Value = Heap#heap.heap,
Maps = Heap#heap.maps,
ValueSize =
if is_binary(Value) -> byte_size(Value);
true -> 0 end,
MapsSize =
lists:sum([ pmap_size(Map) || Map <- maps:values(Maps#maps.maps) ]),
ValueSize + MapsSize.
pmap_size(#pmap{data = stored}) -> 0;
pmap_size(#pmap{data = Data}) when is_map(Data) ->
lists:sum([ byte_size(Key) + byte_size(Val)
|| {Key, Val} <- maps:to_list(Data),
Val /= tombstone ]).
%% -- Value to binary --------------------------------------------------------
-spec to_binary(gmb_aevm_data:data()) -> gmb_aevm_data:heap().
%% Encode the data as a heap where the first word is the value (for unboxed
%% types) or a pointer to the value (for boxed types).
to_binary(Data) ->
to_binary(Data, 0).
to_binary(Data, BaseAddress) ->
{Address, Memory} = to_binary1(Data, BaseAddress + 32),
R = <<Address:256, Memory/binary>>,
R.
%% Allocate the data in memory, from the given address. Return a pair
%% of memory contents from that address and the value representing the
%% data.
to_binary1(Data,_Address) when is_integer(Data) ->
{Data,<<>>};
to_binary1(Data, Address) when is_binary(Data) ->
%% a string
Words = gmb_memory:binary_to_words(Data),
{Address,<<(size(Data)):256, << <<W:256>> || W <- Words>>/binary>>};
to_binary1({contract_bytearray, FateCode}, Address) when is_binary(FateCode) ->
Words = gmb_memory:binary_to_words(FateCode),
{Address,<<(size(FateCode)):256, << <<W:256>> || W <- Words>>/binary>>};
to_binary1(none, Address) -> to_binary1({variant, 0, []}, Address);
to_binary1({some, Value}, Address) -> to_binary1({variant, 1, [Value]}, Address);
to_binary1(word, Address) -> to_binary1({?TYPEREP_WORD_TAG}, Address);
to_binary1(string, Address) -> to_binary1({?TYPEREP_STRING_TAG}, Address);
to_binary1(typerep, Address) -> to_binary1({?TYPEREP_TYPEREP_TAG}, Address);
to_binary1(contract_bytearray, Address) -> to_binary1({?TYPEREP_CONTRACT_BYTEARRAY_TAG}, Address);
to_binary1(function, Address) -> to_binary1({?TYPEREP_FUN_TAG}, Address);
to_binary1({list, T}, Address) -> to_binary1({?TYPEREP_LIST_TAG, T}, Address);
to_binary1({option, T}, Address) -> to_binary1({variant, [[], [T]]}, Address);
to_binary1({tuple, Ts}, Address) -> to_binary1({?TYPEREP_TUPLE_TAG, Ts}, Address);
to_binary1({variant, Cons}, Address) -> to_binary1({?TYPEREP_VARIANT_TAG, Cons}, Address);
to_binary1({map, K, V}, Address) -> to_binary1({?TYPEREP_MAP_TAG, K, V}, Address);
to_binary1({variant, Tag, Args}, Address) ->
to_binary1(list_to_tuple([Tag | Args]), Address);
to_binary1(Map, Address) when is_map(Map) ->
Size = maps:size(Map),
%% Sort according to binary ordering
KVs = lists:sort([ {to_binary(K), to_binary(V)} || {K, V} <- maps:to_list(Map) ]),
{Address, <<Size:256, << <<(byte_size(K)):256, K/binary,
(byte_size(V)):256, V/binary>> || {K, V} <- KVs >>/binary >>};
to_binary1({}, _Address) ->
{0, <<>>};
to_binary1(Data, Address) when is_tuple(Data) ->
{Elems,Memory} = to_binaries(tuple_to_list(Data),Address+32*size(Data)),
ElemsBin = << <<W:256>> || W <- Elems>>,
{Address,<< ElemsBin/binary, Memory/binary >>};
to_binary1([],_Address) ->
<<Nil:256>> = <<(-1):256>>,
{Nil,<<>>};
to_binary1([H|T],Address) ->
to_binary1({H,T},Address).
to_binaries([],_Address) ->
{[],<<>>};
to_binaries([H|T],Address) ->
{HRep,HMem} = to_binary1(H,Address),
{TRep,TMem} = to_binaries(T,Address+size(HMem)),
{[HRep|TRep],<<HMem/binary, TMem/binary>>}.
%% Interpret a return value (a binary) using a type rep.
-spec from_heap(Type :: ?Type(), Heap :: binary(), Ptr :: integer()) ->
{ok, term()} | {error, term()}.
from_heap(Type, Heap, Ptr) ->
try {ok, from_binary(#{}, Type, Heap, Ptr)}
catch _:Err ->
%% io:format("** Error: from_heap failed with ~p\n ~p\n", [Err, erlang:get_stacktrace()]),
{error, Err}
end.
%% Base address is the address of the first word of the given heap.
-spec from_binary(T :: ?Type(),
Heap :: binary(),
BaseAddr :: non_neg_integer()) ->
{ok, term()} | {error, term()}.
from_binary(T, Heap = <<V:256, _/binary>>, BaseAddr) ->
from_heap(T, <<0:BaseAddr/unit:8, Heap/binary>>, V);
from_binary(_, Bin, _BaseAddr) ->
{error, {binary_too_short, Bin}}.
-spec from_binary(?Type(), binary()) -> {ok, term()} | {error, term()}.
from_binary(T, Heap) ->
from_binary(T, Heap, 0).
from_binary(_, word, _, V) ->
V;
from_binary(_, signed_word, _, V) ->
<<N:256/signed>> = <<V:256>>,
N;
from_binary(_, bool, _, V) ->
case V of
0 -> false;
1 -> true
end;
from_binary(_, string, Heap, V) ->
StringSize = heap_word(Heap,V),
BitAddr = 8*(V+32),
<<_:BitAddr,Bytes:StringSize/binary,_/binary>> = Heap,
Bytes;
from_binary(_, {tuple, []}, _, _) ->
{};
from_binary(Visited, {tuple,Cpts}, Heap, V) ->
check_circular_refs(Visited, V),
NewVisited = Visited#{V => true},
ElementNums = lists:seq(0, length(Cpts)-1),
TypesAndPointers = lists:zip(Cpts, ElementNums),
ElementAddress = fun(Index) -> V + 32 * Index end,
Element = fun(Index) ->
heap_word(Heap, ElementAddress(Index))
end,
Convert = fun(Type, Index) ->
from_binary(NewVisited, Type, Heap, Element(Index))
end,
Elements = [Convert(T, I) || {T,I} <- TypesAndPointers],
list_to_tuple(Elements);
from_binary(Visited, {list, Elem}, Heap, V) ->
<<Nil:256>> = <<(-1):256>>,
if V==Nil ->
[];
true ->
{H,T} = from_binary(Visited, {tuple,[Elem,{list,Elem}]},Heap,V),
[H|T]
end;
from_binary(Visited, {option, A}, Heap, V) ->
from_binary(Visited, {variant_t, [{none, []}, {some, [A]}]}, Heap, V);
from_binary(Visited, {variant, Cons}, Heap, V) ->
Tag = heap_word(Heap, V),
Args = lists:nth(Tag + 1, Cons),
Visited1 = Visited#{V => true},
{variant, Tag, tuple_to_list(from_binary(Visited1, {tuple, Args}, Heap, V + 32))};
from_binary(Visited, {variant_t, TCons}, Heap, V) -> %% Tagged variants
{Tags, Cons} = lists:unzip(TCons),
{variant, I, Args} = from_binary(Visited, {variant, Cons}, Heap, V),
Tag = lists:nth(I + 1, Tags),
case Args of
[] -> Tag;
_ -> list_to_tuple([Tag | Args])
end;
from_binary(_Visited, {map, A, B}, Heap, Ptr) ->
%% FORMAT: [Size] [KeySize] Key [ValSize] Val .. [KeySize] Key [ValSize] Val
Size = heap_word(Heap, Ptr),
map_binary_to_value(A, B, Size, Heap, Ptr + 32);
from_binary(Visited, typerep, Heap, V) ->
check_circular_refs(Visited, V),
Tag = heap_word(Heap, V),
Arg1 = fun(T, I) -> from_binary(Visited#{V => true}, T, Heap, heap_word(Heap, V + 32 * I)) end,
Arg = fun(T) -> Arg1(T, 1) end,
case Tag of
?TYPEREP_WORD_TAG -> word;
?TYPEREP_STRING_TAG -> string;
?TYPEREP_TYPEREP_TAG -> typerep;
?TYPEREP_LIST_TAG -> {list, Arg(typerep)};
?TYPEREP_TUPLE_TAG -> {tuple, Arg({list, typerep})};
?TYPEREP_VARIANT_TAG -> {variant, Arg({list, {list, typerep}})};
?TYPEREP_MAP_TAG -> {map, Arg(typerep), Arg1(typerep, 2)};
?TYPEREP_FUN_TAG -> function;
?TYPEREP_CONTRACT_BYTEARRAY_TAG -> contract_bytearray
end;
from_binary(_, contract_bytearray, Heap, V) ->
FateCodeSize = heap_word(Heap, V),
BitAddr = 8*(V+32),
<<_:BitAddr,Bytes:FateCodeSize/binary,_/binary>> = Heap,
{contract_bytearray, Bytes}.
map_binary_to_value(KeyType, ValType, N, Bin, Ptr) ->
%% Avoid looping on bogus sizes
MaxN = byte_size(Bin) div 64,
Heap = heap_fragment(Bin),
map_from_binary({value, KeyType, ValType}, min(N, MaxN), Heap, Ptr, #{}).
map_from_binary(_, 0, _, _, Map) -> Map;
map_from_binary({value, KeyType, ValType} = Output, I, Heap, Ptr, Map) ->
KeySize = get_word(Heap, Ptr),
KeyPtr = Ptr + 32,
KeyBin = get_chunk(Heap, KeyPtr, KeySize),
ValSize = get_word(Heap, KeyPtr + KeySize),
ValPtr = KeyPtr + KeySize + 32,
ValBin = get_chunk(Heap, ValPtr, ValSize),
%% Keys and values are self contained binaries
{ok, Key} = from_binary(KeyType, KeyBin),
{ok, Val} = from_binary(ValType, ValBin),
map_from_binary(Output, I - 1, Heap, ValPtr + ValSize, Map#{Key => Val}).
check_circular_refs(Visited, V) ->
case maps:is_key(V, Visited) of
true -> exit(circular_references);
false -> ok
end.
heap_word(Heap, Addr) when is_binary(Heap) ->
BitSize = 8*Addr,
<<_:BitSize,W:256,_/binary>> = Heap,
W;
heap_word(Heap, Addr) when is_map(Heap) ->
0 = Addr rem 32, %% Check that it's word aligned.
maps:get(Addr, Heap, 0).
get_word(#heap{offset = Offs, heap = Mem}, Addr) when Addr >= Offs ->
get_word(Mem, Addr - Offs);
get_word(Mem, Addr) when is_binary(Mem) ->
<<_:Addr/unit:8, Word:256, _/binary>> = Mem,
Word.
get_chunk(#heap{offset = Offs, heap = Mem}, Addr, Bytes) when Addr >= Offs ->
get_chunk(Mem, Addr - Offs, Bytes);
get_chunk(Mem, Addr, Bytes) when is_binary(Mem) ->
<<_:Addr/unit:8, Chunk:Bytes/binary, _/binary>> = Mem,
Chunk.

View File

@ -1,22 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc
%%% Memory speifics that compiler and VM need to agree upon
%%% @end
%%% Updated : 22 Jan 2025
%%% Created : 19 Dec 2018
%%%-------------------------------------------------------------------
-module(gmb_memory).
-vsn("3.4.1").
-export([binary_to_words/1]).
binary_to_words(<<>>) ->
[];
binary_to_words(<<N:256,Bin/binary>>) ->
[N|binary_to_words(Bin)];
binary_to_words(Bin) ->
binary_to_words(<<Bin/binary,0>>).

View File

@ -1,13 +1,12 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc Basic tests for Fate data
%%% @end
%%%-------------------------------------------------------------------
-module(gmb_data_test).
-module(aeb_data_test).
-include_lib("eunit/include/eunit.hrl").
format_integer_test() ->
"0" = gmb_fate_data:format(0).
"0" = aeb_fate_data:format(0).

View File

@ -1,20 +1,19 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc Basic tests for Fate serialization
%%%
%%% To run:
%%% TEST=gmb_fate_asm_test rebar3 eunit
%%% TEST=aeb_fate_asm_test rebar3 eunit
%%%
%%% @end
%%%-------------------------------------------------------------------
-module(gmb_fate_asm_test).
-module(aeb_fate_asm_test).
-include_lib("eunit/include/eunit.hrl").
asm_path() ->
filename:join(code:lib_dir(gmbytecode, test), "asm_code").
filename:join(code:lib_dir(aebytecode, test), "asm_code").
file_path(File) ->
@ -22,11 +21,16 @@ file_path(File) ->
read_file(File) ->
FilePath = file_path(File),
Asm = gmb_fate_asm:read_file(FilePath),
Asm = aeb_fate_asm:read_file(FilePath),
Asm.
assemble(Asm) ->
gmb_fate_asm:asm_to_bytecode(Asm, []).
{Env, BC} = aeb_fate_asm:asm_to_bytecode(Asm, []),
{Env, BC}.
disassemble(BC) ->
aeb_fate_asm:bytecode_to_fate_code(BC, []).
asm_disasm_idenity_test() ->
check_roundtrip(identity).
@ -48,19 +52,18 @@ sources() ->
, "tuple"
, "mapofmap"
, "immediates"
, "names"
, "meta"
, "all_instructions"
].
check_roundtrip(File) ->
AssemblerCode = read_file(File),
{_Env, ByteCode} = assemble(AssemblerCode),
FateCode = gmb_fate_code:deserialize(ByteCode),
DissasmCode = gmb_fate_asm:to_asm(FateCode),
FateCode = disassemble(ByteCode),
DissasmCode = aeb_fate_asm:to_asm(FateCode),
io:format("~s~n", [AssemblerCode]),
io:format("~s~n", [DissasmCode]),
{_Env2, ByteCode2} = assemble(DissasmCode),
ByteCode3 = gmb_fate_code:serialize(FateCode),
Code1 = gmb_fate_asm:strip(ByteCode),
Code2 = gmb_fate_asm:strip(ByteCode2),
Code3 = gmb_fate_asm:strip(ByteCode3),
?assertEqual(Code1, Code2),
?assertEqual(Code1, Code3).
Code1 = aeb_fate_asm:strip(ByteCode),
Code2 = aeb_fate_asm:strip(ByteCode2),
io:format("~s~n", [aeb_fate_asm:to_asm(disassemble(ByteCode2))]),
?assertEqual(Code1, Code2).

View File

@ -0,0 +1,83 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc Basic tests for Fate serialization
%%%
%%% To run:
%%% TEST=aeb_serialize_test rebar3 eunit
%%%
%%% @end
%%%-------------------------------------------------------------------
-module(aeb_serialize_test).
-include_lib("eunit/include/eunit.hrl").
serialize_integer_test() ->
<<0>> = aeb_fate_encoding:serialize(aeb_fate_data:make_integer(0)),
<<2>> = aeb_fate_encoding:serialize(aeb_fate_data:make_integer(1)),
<<126>> = aeb_fate_encoding:serialize(aeb_fate_data:make_integer(63)),
<<111, 0>> = aeb_fate_encoding:serialize(aeb_fate_data:make_integer(64)),
<<111,130,255,255>> = aeb_fate_encoding:serialize(aeb_fate_data:make_integer(65535 + 64)),
<<111,184,129,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>> =
aeb_fate_encoding:serialize(aeb_fate_data:make_integer(1 bsl 1024 + 64)).
serialize_deserialize_test_() ->
[{lists:flatten(io_lib:format("~p", [X])),
fun() ->
?assertEqual(X,
aeb_fate_encoding:deserialize(aeb_fate_encoding:serialize(X)))
end}
|| X <- sources()].
make_int_list(N) -> [aeb_fate_data:make_integer(I) || I <- lists:seq(1, N)].
sources() ->
FortyTwo = aeb_fate_data:make_integer(42),
Unit = aeb_fate_data:make_unit(),
True = aeb_fate_data:make_boolean(true),
False = aeb_fate_data:make_boolean(false),
Nil = aeb_fate_data:make_list([]),
EmptyString = aeb_fate_data:make_string(""),
EmptyMap = aeb_fate_data:make_map(#{}),
[aeb_fate_data:make_integer(0),
aeb_fate_data:make_integer(1),
True, False, Unit, Nil, EmptyString, EmptyMap,
aeb_fate_data:make_list([True]),
aeb_fate_data:make_address(
<<0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
1,2>>),
aeb_fate_data:make_string(<<"Hello">>),
aeb_fate_data:make_string(
<<"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789">>), %% Magic concat 80 char string.
aeb_fate_data:make_tuple({True, FortyTwo}),
aeb_fate_data:make_tuple(list_to_tuple(make_int_list(65))),
aeb_fate_data:make_tuple(list_to_tuple(make_int_list(16))),
aeb_fate_data:make_map(#{ aeb_fate_data:make_integer(1) => True, aeb_fate_data:make_integer(2) => False}),
aeb_fate_data:make_map(#{ aeb_fate_data:make_string(<<"foo">>) => aeb_fate_data:make_tuple({FortyTwo, True})}),
aeb_fate_data:make_list(make_int_list(3)),
aeb_fate_data:make_integer(-65),
aeb_fate_data:make_integer(65),
aeb_fate_data:make_integer(-32432847932847928374983),
aeb_fate_data:make_bits(0),
aeb_fate_data:make_bits(1),
aeb_fate_data:make_bits(-1),
aeb_fate_data:make_list(make_int_list(65)),
aeb_fate_data:make_variant(2, 0, {FortyTwo}),
aeb_fate_data:make_variant(2, 1, {}),
aeb_fate_data:make_list([aeb_fate_data:make_variant(3, 0, {})]),
aeb_fate_data:make_variant(255, 254, {}),
aeb_fate_data:make_variant(5, 3, {aeb_fate_data:make_boolean(true),
aeb_fate_data:make_list(make_int_list(3)),
aeb_fate_data:make_string(<<"foo">>)})
].

View File

@ -1,4 +1,4 @@
-module(gmbytecode_SUITE).
-module(aebytecode_SUITE).
%% common_test exports
-export([ all/0 ]).
@ -12,8 +12,8 @@ all() ->
[ roundtrip_identy ].
roundtrip_identy(_Cfg) ->
CodeDir = code:lib_dir(gmbytecode, test),
FileName = filename:join(CodeDir, "asm_code/identity.gmsm"),
Code = gmb_asm:file(FileName, []),
ct:log("Code ~p:~n~s~n", [FileName, gmb_disassemble:format(Code, fun io:format/2)]),
CodeDir = code:lib_dir(aebytecode, test),
FileName = filename:join(CodeDir, "asm_code/identity.aesm"),
Code = aeb_asm:file(FileName, []),
ct:log("Code ~p:~n~s~n", [FileName, aeb_disassemble:format(Code, fun io:format/2)]),
ok.

View File

@ -0,0 +1,233 @@
;; CONTRACT all_instructions
;; Dont expect this contract to typecheck or run.
;; Just used to check assembler rountrip of all instruction.
FUNCTION foo () : {tuple, []}
RETURN
RETURNR a13
CALL foo
CALL_R arg125 foo
CALL_T foo
CALL_TR arg245 foo
JUMP 5514251025295783441695716053282666408426
JUMPIF arg196 0x12c651665
SWITCH_V2 a27 63 33
SWITCH_V3 var4 0x1d61723dd 79 7
SWITCH_VN #nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv [1, 2, 3]
PUSH var80
DUPA
DUP a
POP a107
STORE arg183 var225
INCA
INC a25
DECA
DEC a
ADD a217 a a
SUB arg35 arg165 var74
MUL 44 35 "foo"
DIV 263838340369912686645632650718169038811 a24 a
MOD var113 arg80 arg207
POW a176 a a123
LT a 78 var81
GT arg19 4729414120208894485838100532547810615352 var175
EQ 85 a arg164
ELT a161 arg226 a168
EGT a131 1 var250
NEQ a85 a a83
AND var255 0x294a24f6 var189
OR (| 2 | 0 | ( (), (42) ) |) arg168 var107
NOT arg124 a
TUPLE 5019186157739257888756115213149493826410
ELEMENT integer arg148 var25 a219
MAP_EMPTY a135
MAP_LOOKUP a82 a a143
MAP_LOOKUPD var112 arg35 a163 var112
MAP_UPDATE false a0 a56 a
MAP_DELETE arg180 a var1
MAP_MEMBER a { true => 4} 94
MAP_FROM_LIST () a159
NIL arg91
IS_NIL a121 var6
CONS arg185 "foo" a114
HD a150 var124
TL arg223 a
LENGTH var216 a143
STR_EQ { 203961992615221001243597889146034217896 => 0x1f53a1843} 281217554184165828643225535776787296845 a177
STR_JOIN a a 7144184027126178769820155907121270843348
INT_TO_STR var238 a
ADDR_TO_STR a arg216
STR_REVERSE a174 #nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv
INT_TO_ADDR arg127 var207
VARIANT a a 0x1f7b72200 a
VARIANT_TEST a26 arg217 a
VARIANT_ELEMENT a86 arg103 arg108
BITS_NONEA
BITS_NONE a
BITS_ALLA
BITS_ALL a164
BITS_ALL_N a221 arg135
BITS_SET arg150 a48 { 0x1a715e2a6 => 3}
BITS_CLEAR arg98 a arg164
BITS_TEST a a242 (| 5 | 2 | (1, "foo", ()) |)
BITS_SUM a244 a71
BITS_OR var20 var186 a
BITS_AND a187 4 arg203
BITS_DIFF var200 arg247 var20
ADDRESS a237
BALANCE a231
ORIGIN arg216
CALLER a27
GASPRICE arg119
BLOCKHASH arg110
BENEFICIARY var163
TIMESTAMP a
GENERATION 242795038229506961431398379342231049652
MICROBLOCK arg43
DIFFICULTY var24
GASLIMIT arg220
GAS var35
LOG0 a a85
LOG1 arg94 arg86 arg208
LOG2 a113 (| 5 | 2 | (1, "foo", ()) |) arg238 var108
LOG3 arg255 arg15 arg211 var139 arg44
LOG4 #nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv a247 a 9 a38 a
DEACTIVATE
SPEND #nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv var136
ORACLE_REGISTER arg29 48 ((| 5 | 2 | (1, "foo", ()) |)) arg65 { <> => false} <>
ORACLE_QUERY
ORACLE_RESPOND
ORACLE_EXTEND
ORACLE_GET_ANSWER
ORACLE_GET_QUESTION
ORACLE_QUERY_FEE
AENS_RESOLVE
AENS_PRECLAIM
AENS_CLAIM
AENS_UPDATE
AENS_TRANSFER
AENS_REVOKE
ECVERIFY
SHA3
SHA256
BLAKE2B
DUMMY7ARG a a 7607708484837907159893701471377343595877 (| 2 | 0 | ( [], [ 45, { 1 => 3441201581501946066216994494994943246334} ] ) |) a0 var56 "foo"
DUMMY8ARG 3673679924816289365509492271980889822579 a69 arg242 var237 a175 arg106 () var255
ABORT a
EXIT var120
NOP
RETURNR ()

View File

@ -62,13 +62,13 @@ id_local: JUMPDEST
JUMP
;; Test the code from the shell
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => list_to_binary(gmb_asm:file("apps/gmsophia/test/contracts/identity.aesm", [])), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0 }, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{})).
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => list_to_binary(aeb_asm:file("apps/aesophia/test/contracts/identity.aesm", [])), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0 }, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{})).
;; Test the code from the shell with tracing.
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => gmb_asm:file("apps/gmsophia/test/contracts/identity.aesm", []), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0 }, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{ trace => true})).
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => aeb_asm:file("apps/aesophia/test/contracts/identity.aesm", []), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0 }, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{ trace => true})).
;; Test the code from the shell with tracing.
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => gmb_asm:file("apps/gmsophia/test/contracts/identity.aesm", [pp_tokens, pp_opcodes, pp_patched_code, pp_hex_string]), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0}, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{ trace => true})).
;; aevm_eeevm:eval(aevm_eeevm_state:init(#{ exec => #{ code => aeb_asm:file("apps/aesophia/test/contracts/identity.aesm", [pp_tokens, pp_opcodes, pp_patched_code, pp_hex_string]), address => 0, caller => 0, data => <<0:256, 42:256>>, gas => 1000000, gasPrice => 1, origin => 0, value => 0}, env => #{currentCoinbase => 0, currentDifficulty => 0, currentGasLimit => 10000, currentNumber => 0, currentTimestamp => 0}, pre => #{}}, #{ trace => true})).
;; aec_conductor:stop_mining().

View File

@ -5,4 +5,4 @@ FUNCTION id(integer) -> integer
;; Test the code from the shell
;; _build/default/rel/aessembler/bin/aessembler console
;; gmb_gmfa:file("../../../../test/asm_code/identity.fate", []).
;; aeb_aefa:file("../../../../test/asm_code/identity.fate", []).

View File

@ -66,18 +66,12 @@ FUNCTION tuple() : {tuple, [integer, boolean, string, {tuple, [integer, integer]
FUNCTION address() : address
RETURNR @ak_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv
FUNCTION contract() : contract
RETURNR @ct_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv
FUNCTION channel() : channel
RETURNR @ch_nv5B93FPzRHrGNmMdTDfGdd5xGZvep3MVSpJqzcQmMp59bBCv
RETURNR #deadbeef
;; Option(integer) = NONE | SOME(integer)
FUNCTION variant_none() : {variant, [{tuple, []}, {tuple, [integer]}]}
RETURNR (| [0,1] | 0 | () |)
RETURNR (| 2 | 0 | () |)
;; Option(integer) = NONE | SOME(integer)
FUNCTION variant_some() : {variant, [{tuple, []}, {tuple, [integer]}]}
RETURNR (| [0,1] | 1 | (42) |)
RETURNR (| 2 | 1 | (42) |)

View File

@ -2,7 +2,7 @@
FUNCTION call(integer):integer
STORE var1 arg0
PUSH 0
CALL "write"
CALL write
PUSH var1
RETURN

View File

@ -1,12 +0,0 @@
;; CONTRACT meta
FUNCTION meta() : boolean
CREATE @cb_+PJGA6A4Fz4T2LHV5knITCldR3rqO7HrXO2zhOAR9JWNbhf8Q8C4xbhx/gx8JckANwAXfQBVACAAAP4vhlvZADcABwECgv5E1kQfADcBBzcACwAWMBReAHMAFjBvJFMAFjBvggOoFAAUABQSggABAz/+tIwWhAA3AAdTAAD+1jB5kAQ3AAcLAAD+6MRetgA3AQc3ABoGggABAz+4TS8GEQx8JclFY2FsbGVyX2lzX2NyZWF0b3IRL4Zb2Q1nZXQRRNZEHxFpbml0EbSMFoQdYmFsYW5jZRHWMHmQFXZhbHVlEejEXrYNc2V0gi8AhTQuMy4wAUqQ8s4= a 2137
CLONE a arg0 2137 false
CLONE_G a arg0 2137 10000 false
BYTECODE_HASH a a
BYTECODE_HASH a a
EQ a a a
RETURNR a

View File

@ -1,21 +0,0 @@
;; CONTRACT names
FUNCTION preclaim(address, {bytes, 32}) : {tuple, []}
AENS_PRECLAIM #AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA== arg0 arg1
RETURNR {}
FUNCTION claim(address, string, integer, integer) : {tuple, []}
AENS_CLAIM #AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA== arg0 arg1 arg2 arg3
RETURNR {}
FUNCTION transfer(address, address, {bytes, 32}) : {tuple, []}
AENS_TRANSFER #AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA== arg0 arg1 arg2
RETURNR {}
FUNCTION revoke(address, {bytes, 32}) : {tuple, []}
AENS_REVOKE #AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA== arg0 arg1
RETURNR {}
FUNCTION resolve(string, string) : {variant, [{tuple, []}, {tuple, [address]}]}
AENS_RESOLVE a arg0 arg1 'address
RETURN

View File

@ -19,23 +19,27 @@ FUNCTION inc(integer) -> integer
FUNCTION call(integer) -> integer
INCA
CALL "inc"
CALL inc
INCA
RETURN
FUNCTION tailcall(integer) -> integer
INCA
CALL_T "inc"
CALL_T inc
;; FUNCTION remote_call(integer) : integer
;; PUSH arg0
;; CALL_R remote.add_five {tuple, [integer]} integer 0 ;; typereps don't parse
;; INCA
;; RETURN
FUNCTION remote_call(integer) : integer
PUSH arg0
CALL_R remote.add_five
INCA
RETURN
FUNCTION remote_tailcall(integer) : integer
PUSH arg0
CALL_TR remote add_five
;; Test the code from the shell
;; _build/default/rel/aessembler/bin/aessembler console
;; gmb_gmfa:file("../../../../test/asm_code/test.fate", []).
;; f(Asm), f(Env), f(BC), Asm = gmfa_asm:read_file("../../../../test/asm_code/test.fate"), {Env, BC} = gmfa_asm:asm_to_bytecode(Asm, []), gmfa_asm:bytecode_to_fate_code(BC, []).
;; aeb_aefa:file("../../../../test/asm_code/test.fate", []).
;; f(Asm), f(Env), f(BC), Asm = aefa_asm:read_file("../../../../test/asm_code/test.fate"), {Env, BC} = aefa_asm:asm_to_bytecode(Asm, []), aefa_asm:bytecode_to_fate_code(BC, []).

View File

@ -1,13 +1,13 @@
FUNCTION make_0tuple():{tuple, []}
;; BB : 0
TUPLE a 0
TUPLE 0
RETURN
FUNCTION make_2tuple(integer, integer):{tuple, [integer, integer]}
;; BB : 0
PUSH arg0
PUSH arg1
TUPLE a 2
TUPLE 2
RETURN
FUNCTION make_5tuple(integer, integer, integer, integer, integer):
@ -18,18 +18,18 @@ FUNCTION make_5tuple(integer, integer, integer, integer, integer):
PUSH arg2
PUSH arg3
PUSH arg4
TUPLE a 5
TUPLE 5
RETURN
FUNCTION element1(integer, integer): integer
;; BB : 0
PUSH arg0
PUSH arg1
TUPLE a 2
ELEMENT a 1 a
TUPLE 2
ELEMENT integer a 1 a
RETURN
FUNCTION element({tuple, [integer, integer]}, integer): integer
;; BB : 0
ELEMENT a arg1 arg0
ELEMENT integer a arg1 arg0
RETURN

View File

@ -1,98 +0,0 @@
%%%-------------------------------------------------------------------
%%% @copyright (C) 2025, QPQ AG
%%% @copyright (C) 2018, Aeternity Anstalt
%%% @doc Basic tests for Fate serialization
%%%
%%% To run:
%%% TEST=gmb_serialize_test rebar3 eunit
%%%
%%% @end
%%%-------------------------------------------------------------------
-module(gmb_serialize_test).
-include_lib("eunit/include/eunit.hrl").
serialize_integer_test() ->
<<0>> = gmb_fate_encoding:serialize(gmb_fate_data:make_integer(0)),
<<2>> = gmb_fate_encoding:serialize(gmb_fate_data:make_integer(1)),
<<126>> = gmb_fate_encoding:serialize(gmb_fate_data:make_integer(63)),
<<111, 0>> = gmb_fate_encoding:serialize(gmb_fate_data:make_integer(64)),
<<111,130,255,255>> = gmb_fate_encoding:serialize(gmb_fate_data:make_integer(65535 + 64)),
<<111,184,129,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>> =
gmb_fate_encoding:serialize(gmb_fate_data:make_integer(1 bsl 1024 + 64)).
serialize_deserialize_test_() ->
[{lists:flatten(io_lib:format("~p", [X])),
fun() ->
?assertEqual(X,
gmb_fate_encoding:deserialize(gmb_fate_encoding:serialize(X)))
end}
|| X <- sources()].
make_int_list(N) -> [gmb_fate_data:make_integer(I) || I <- lists:seq(1, N)].
sources() ->
FortyTwo = gmb_fate_data:make_integer(42),
Unit = gmb_fate_data:make_unit(),
True = gmb_fate_data:make_boolean(true),
False = gmb_fate_data:make_boolean(false),
Nil = gmb_fate_data:make_list([]),
EmptyString = gmb_fate_data:make_string(""),
EmptyMap = gmb_fate_data:make_map(#{}),
[gmb_fate_data:make_integer(0),
gmb_fate_data:make_integer(1),
True, False, Unit, Nil, EmptyString, EmptyMap,
gmb_fate_data:make_hash(<<1,2,3,4,5>>),
gmb_fate_data:make_signature(<<1,2,3,4,5>>),
gmb_fate_data:make_contract(<<1,2,3,4,5>>),
gmb_fate_data:make_channel(<<1,2,3,4,5>>),
gmb_fate_data:make_list([True]),
gmb_fate_data:make_address(
<<0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
1,2>>),
gmb_fate_data:make_string(<<"Hello">>),
gmb_fate_data:make_string(
<<"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789">>), %% Magic concat 80 char string.
gmb_fate_data:make_tuple({True, FortyTwo}),
gmb_fate_data:make_tuple(list_to_tuple(make_int_list(65))),
gmb_fate_data:make_tuple(list_to_tuple(make_int_list(16))),
gmb_fate_data:make_map(#{ gmb_fate_data:make_integer(1) => True, gmb_fate_data:make_integer(2) => False}),
gmb_fate_data:make_map(#{ gmb_fate_data:make_string(<<"foo">>) => gmb_fate_data:make_tuple({FortyTwo, True})}),
gmb_fate_data:make_list(make_int_list(3)),
gmb_fate_data:make_integer(-65),
gmb_fate_data:make_integer(65),
gmb_fate_data:make_integer(-32432847932847928374983),
gmb_fate_data:make_bits(0),
gmb_fate_data:make_bits(1),
gmb_fate_data:make_bits(-1),
gmb_fate_data:make_list(make_int_list(65)),
gmb_fate_data:make_variant([1,2,3], 0, {FortyTwo}),
gmb_fate_data:make_variant([2,0], 1, {}),
gmb_fate_data:make_list([gmb_fate_data:make_variant([0,0,0], 0, {})]),
gmb_fate_data:make_variant([0|| _<-lists:seq(1,255)], 254, {}),
gmb_fate_data:make_variant([0,1,2,3,4,5],
3, {gmb_fate_data:make_boolean(true),
gmb_fate_data:make_list(make_int_list(3)),
gmb_fate_data:make_string(<<"foo">>)}),
%% contract C =
%% type state = int
%% entrypoint init() = 2137
%% cb_+FFGA6Af6sHTrctrcNGwEa8MPei7iEHIjnxcsBzlA5IK0Yn11sCllP5E1kQfADcANwAaDoJvgggZAQM/jC8BEUTWRB8RaW5pdIIvAIU0LjMuMAD7u
gmb_fate_data:make_contract_bytearray(
<<248,81,70,3,160,31,234,193,211,173,203,107,112,209,176,17,175,12,61,232,187,
136,65,200,142,124,92,176,28,229,3,146,10,209,137,245,214,192,165,148,254,68,
214,68,31,0,55,0,55,0,26,14,130,111,130,8,25,1,3,63,140,47,1,17,68,214,68,31,
17,105,110,105,116,130,47,0,133,52,46,51,46,48,0>>)
].

View File

@ -1,19 +0,0 @@
{name,"Gajumaru Bytecode"}.
{type,lib}.
{modules,[]}.
{prefix,none}.
{desc,"A library and stand alone assembler for Gajumaru bytecode. This version supports AEVM bytecode and FATE bytecode."}.
{author,[]}.
{package_id,{"otpr","gmbytecode",{3,4,1}}}.
{deps,[{"otpr","gmserialization",{0,1,2}},
{"otpr","eblake2",{1,0,0}},
{"otpr","getopt",{1,0,2}}]}.
{key_name,none}.
{a_email,[]}.
{c_email,[]}.
{copyright,[]}.
{file_exts,[]}.
{license,skip}.
{repo_url,"https://git.qpq.swiss/QPQ-AG/gmbytecode"}.
{tags,["gajumaru","blockchain","fate","bytecode","crypto","gm"]}.
{ws_url,[]}.

View File

@ -1,20 +0,0 @@
#! /bin/bash
# This is a small pre-packaging source generation and include correction script that should be
# run before packaging this project for use with ZX/Zomp.
rm -rf _build
rm -f src/gmb_fate_opcodes.erl src/gmb_fate_ops.erl include/gmb_fate_opcodes.hrl src/gmb_fate_asm_scan.xrl src/gmb_fate_pp.erl
make sources
cd src
for f in $(ls --ignore=gmb_fate_generate_ops.erl | grep erl)
do
echo "Updating includes in: $f"
sed -i 's/gmbytecode\/include\///g' "$f"
sed -i 's/\.\.\/include\///g' "$f"
sed -i 's/include_lib/include/g' "$f"
done
cd ..
rm -f ebin/*.beam
rm -f rebar*
rm -rf quickcheck