/* The Keccak sponge function, designed by Guido Bertoni, Joan Daemen, Michaƫl Peeters and Gilles Van Assche. For more information, feedback or questions, please refer to our website: http://keccak.noekeon.org/ Implementation by Ronny Van Keer, hereby denoted as "the implementer". To the extent possible under law, the implementer has waived all copyright and related or neighboring rights to the source code in this file. http://creativecommons.org/publicdomain/zero/1.0/ */ #include "Keccak-avr8-settings.h" #include "crypto_hash.h" #define cKeccakR_SizeInBytes (cKeccakR/8) #ifndef crypto_hash_BYTES #ifdef cKeccakFixedOutputLengthInBytes #define crypto_hash_BYTES cKeccakFixedOutputLengthInBytes #else #define crypto_hash_BYTES cKeccakR_SizeInBytes #endif #endif // Registers used in all routines #define zero 1 #define rpState 24 #define rX 26 #define rY 28 #define rZ 30 /* * int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen ) * * argument out is passed in r24:r25 * argument in is passed in r22:r23 * argument inlen is passed in r14:r21, only lowest 16-bits (r14-r15) are used */ .global crypto_hash // populate.py, please update crypto_hash crypto_hash: // populate.py, please update crypto_hash // crypto_hash only registers #define rT1 16 #define rT2 17 #define rT3 18 #define rInLen 22 //(2 regs) #define sp 0x3D push r2 push r3 push r4 push r5 push r6 push r7 push r8 push r9 push r10 push r11 push r12 push r13 push r14 push r15 push r16 push r17 push r28 push r29 // Allocate state (25*8) + C variables (5*8) in rZ, sp in rZ+1, sp+1 subi rZ, 240 sbci rZ+1, 0 in r0, 0x3F cli out sp+1, rZ+1 out sp, rZ out 0x3F, r0 adiw rZ, 41 // pointer to start of state, end of C, compensate post decrement push r24 // save out pointer push r25 movw rpState, rZ movw rY, r22 //y contains in pointer movw rInLen, r14 ldi rT3, 5*5*8 //clear state clearStateLoop: st z+, zero dec rT3 brne clearStateLoop // Full blocks cpi rInLen, cKeccakR_SizeInBytes cpc rInLen+1, zero brcs ch_lastblock ch_FullRateLoop: ldi rT3, cKeccakR_SizeInBytes movw rZ, rpState ch_XorLanesLoop: ld rT1, Y+ ld rT2, Z eor rT1, rT2 st Z+, rT1 subi rT3, 1 brne ch_XorLanesLoop push rY push rY+1 call KeccakF pop rY+1 pop rY subi rInLen, cKeccakR_SizeInBytes sbci rInLen+1, 0 cpi rInLen, cKeccakR_SizeInBytes cpc rInLen+1, zero brcc ch_FullRateLoop ch_lastblock: // XOR last uncomplete block into state movw rZ, rpState subi rInLen, 0 breq ch_Padding ch_xorBytesLoop: ld rT1, Y+ ld rT2, Z eor rT1, rT2 st Z+, rT1 subi rInLen, 1 brne ch_xorBytesLoop ch_Padding: ldi rT1, 1 ld rT2, Z eor rT1, rT2 st Z, rT1 ldi rZ, cKeccakR_SizeInBytes-1 add rZ, rpState mov rZ+1, rpState+1 adc rZ+1, zero ld rT1, Z subi rT1, 0x80 st Z, rT1 call KeccakF //output ldi rT3, crypto_hash_BYTES movw rY, rpState pop rZ+1 ; restore out pointer pop rZ outputLoop: ld rT1, Y+ st Z+, rT1 dec rT3 brne outputLoop // Free state and pop registers ldi rZ, 199 add rpState, rZ adc rpState+1, zero in r0, 0x3F cli out sp+1, rpState+1 out sp, rpState out 0x3F, r0 pop r29 pop r28 pop r17 pop r16 pop r15 pop r14 pop r13 pop r12 pop r11 pop r10 pop r9 pop r8 pop r7 pop r6 pop r5 pop r4 pop r3 pop r2 // return 0 mov r24, zero mov r25, zero #undef rInLen #undef rT1 #undef rT2 #undef rT3 #undef sp ret //#define ROT_BIT(a) (a <= 4) ? ((a == 0) ? 0x80 : (a & 7)) : (0x80 | (8-a)) #define ROT_BIT(a) ((a) & 7) #define ROT_BYTE(a) (((a)/8 + !!(((a)%8) > 4)) & 7) KeccakF_RhoPiConstants: .BYTE ROT_BIT( 1), ROT_BYTE( 3), 10 * 8 .BYTE ROT_BIT( 3), ROT_BYTE( 6), 7 * 8 .BYTE ROT_BIT( 6), ROT_BYTE(10), 11 * 8 .BYTE ROT_BIT(10), ROT_BYTE(15), 17 * 8 .BYTE ROT_BIT(15), ROT_BYTE(21), 18 * 8 .BYTE ROT_BIT(21), ROT_BYTE(28), 3 * 8 .BYTE ROT_BIT(28), ROT_BYTE(36), 5 * 8 .BYTE ROT_BIT(36), ROT_BYTE(45), 16 * 8 .BYTE ROT_BIT(45), ROT_BYTE(55), 8 * 8 .BYTE ROT_BIT(55), ROT_BYTE( 2), 21 * 8 .BYTE ROT_BIT( 2), ROT_BYTE(14), 24 * 8 .BYTE ROT_BIT(14), ROT_BYTE(27), 4 * 8 .BYTE ROT_BIT(27), ROT_BYTE(41), 15 * 8 .BYTE ROT_BIT(41), ROT_BYTE(56), 23 * 8 .BYTE ROT_BIT(56), ROT_BYTE( 8), 19 * 8 .BYTE ROT_BIT( 8), ROT_BYTE(25), 13 * 8 .BYTE ROT_BIT(25), ROT_BYTE(43), 12 * 8 .BYTE ROT_BIT(43), ROT_BYTE(62), 2 * 8 .BYTE ROT_BIT(62), ROT_BYTE(18), 20 * 8 .BYTE ROT_BIT(18), ROT_BYTE(39), 14 * 8 .BYTE ROT_BIT(39), ROT_BYTE(61), 22 * 8 .BYTE ROT_BIT(61), ROT_BYTE(20), 9 * 8 .BYTE ROT_BIT(20), ROT_BYTE(44), 6 * 8 .BYTE ROT_BIT(44), ROT_BYTE( 1), 1 * 8 KeccakF_RoundConstants: .BYTE 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x82, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x8a, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x00, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80 .BYTE 0x8b, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x01, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 .BYTE 0x81, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80 .BYTE 0x09, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x8a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x09, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 .BYTE 0x0a, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 .BYTE 0x8b, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 .BYTE 0x8b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x89, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x03, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x02, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x0a, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 .BYTE 0x0a, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80 .BYTE 0x81, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80 .BYTE 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 .BYTE 0x01, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 .BYTE 0x08, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80 .BYTE 0xFF, 0 //terminator .text // KeccakF // Not callable from C! // // argument rpState is passed in r24:r25 // KeccakF: // Variables used in multiple operations #define rTemp 2 // 8 regs (2-9) #define rTempBis 10 // 8 regs (10-17) #define rTempTer 18 // 2 regs (18-19) #define pRound 20 // 2 regs (20-21) // Initial Prepare Theta #define TCIPx rTempTer movw rZ, rpState // Z points to 5 C lanes sbiw rZ, 40 movw rY, rpState ldi TCIPx, 5*8 KeccakInitialPrepTheta_Loop: ld r0, Y adiw rY, 40 ld rTemp, Y adiw rY, 40 eor r0, rTemp ld rTemp, Y adiw rY, 40 eor r0, rTemp ld rTemp, Y eor r0, rTemp ldd rTemp, Y+40 eor r0, rTemp st Z+, r0 subi rY, 119 sbc rY+1, zero dec TCIPx brne KeccakInitialPrepTheta_Loop #undef TCIPx ldi pRound, lo8(KeccakF_RoundConstants) ldi pRound+1, hi8(KeccakF_RoundConstants) Keccak_RoundLoop: // Theta #define TCplus rX #define TCminus rZ #define TCcoordX rTempTer #define TCcoordY rTempTer+1 movw TCminus, rpState sbiw TCminus, 1*8 movw TCplus, rpState sbiw TCplus, 4*8 movw rY, rpState ldi TCcoordX, 0x16 KeccakTheta_Loop1: ld rTemp+0, X+ ld rTemp+1, X+ ld rTemp+2, X+ ld rTemp+3, X+ ld rTemp+4, X+ ld rTemp+5, X+ ld rTemp+6, X+ ld rTemp+7, X+ lsl rTemp+0 rol rTemp+1 rol rTemp+2 rol rTemp+3 rol rTemp+4 rol rTemp+5 rol rTemp+6 rol rTemp+7 adc rTemp+0, zero ld r0, Z+ eor rTemp+0, r0 ld r0, Z+ eor rTemp+1, r0 ld r0, Z+ eor rTemp+2, r0 ld r0, Z+ eor rTemp+3, r0 ld r0, Z+ eor rTemp+4, r0 ld r0, Z+ eor rTemp+5, r0 ld r0, Z+ eor rTemp+6, r0 ld r0, Z+ eor rTemp+7, r0 ldi TCcoordY, 5 KeccakTheta_Loop2: ld r0, Y eor r0, rTemp+0 st Y+, r0 ld r0, Y eor r0, rTemp+1 st Y+, r0 ld r0, Y eor r0, rTemp+2 st Y+, r0 ld r0, Y eor r0, rTemp+3 st Y+, r0 ld r0, Y eor r0, rTemp+4 st Y+, r0 ld r0, Y eor r0, rTemp+5 st Y+, r0 ld r0, Y eor r0, rTemp+6 st Y+, r0 ld r0, Y eor r0, rTemp+7 st Y+, r0 adiw rY, 32 dec TCcoordY brne KeccakTheta_Loop2 subi rY, 200-8 sbc rY+1, zero lsr TCcoordX brcc 1f breq KeccakTheta_End rjmp KeccakTheta_Loop1 1: cpi TCcoordX, 0x0B brne 2f sbiw TCminus, 40 rjmp KeccakTheta_Loop1 2: sbiw TCplus, 40 rjmp KeccakTheta_Loop1 KeccakTheta_End: #undef TCplus #undef TCminus #undef TCcoordX #undef TCcoordY // Rho Pi #define RPindex rTempTer+0 #define RPTemp rTempTer+1 sbiw rY, 32 ld rTemp+0, Y+ ld rTemp+1, Y+ ld rTemp+2, Y+ ld rTemp+3, Y+ ld rTemp+4, Y+ ld rTemp+5, Y+ ld rTemp+6, Y+ ld rTemp+7, Y+ ldi rZ, lo8(KeccakF_RhoPiConstants) ldi rZ+1, hi8(KeccakF_RhoPiConstants) KeccakRhoPi_Loop: ; do bit rotation lpm RPTemp, Z+ ;get nuber of bits to rotate cpi RPTemp, 5 brcs rotate64_nbit_leftOrNot neg RPTemp andi RPTemp, 3 rotate64_nbit_right: bst rTemp, 0 ror rTemp+7 ror rTemp+6 ror rTemp+5 ror rTemp+4 ror rTemp+3 ror rTemp+2 ror rTemp+1 ror rTemp bld rTemp+7, 7 dec RPTemp brne rotate64_nbit_right rjmp KeccakRhoPi_RhoBitRotateDone rotate64_nbit_leftOrNot: tst RPTemp breq KeccakRhoPi_RhoBitRotateDone rotate64_nbit_left: lsl rTemp rol rTemp+1 rol rTemp+2 rol rTemp+3 rol rTemp+4 rol rTemp+5 rol rTemp+6 rol rTemp+7 adc rTemp, r1 dec RPTemp brne rotate64_nbit_left KeccakRhoPi_RhoBitRotateDone: lpm r0, Z+ ;get number of bytes to rotate lpm RPindex, Z+ ;get index in state movw rY, rpState add rY, RPindex adc rY+1, zero ldi rX, rTempBis add rX, r0 mov rX+1, zero ldi RPTemp, 8 KeccakRhoPi_PiByteRotLoop: ld r0, Y+ st X+, r0 cpi rX, rTempBis+8 brne KeccakRhoPi_PiByteRotFirst ldi rX, rTempBis KeccakRhoPi_PiByteRotFirst: dec RPTemp brne KeccakRhoPi_PiByteRotLoop sbiw rY, 8 st Y+, rTemp+0 st Y+, rTemp+1 st Y+, rTemp+2 st Y+, rTemp+3 st Y+, rTemp+4 st Y+, rTemp+5 st Y+, rTemp+6 st Y+, rTemp+7 movw rTemp+0, rTempBis+0 movw rTemp+2, rTempBis+2 movw rTemp+4, rTempBis+4 movw rTemp+6, rTempBis+6 KeccakRhoPi_RhoDone: subi RPindex, 8 brne KeccakRhoPi_Loop #undef RPindex #undef RPTemp // Chi Iota prepare Theta #define CIPTa0 rTemp #define CIPTa1 rTemp+1 #define CIPTa2 rTemp+2 #define CIPTa3 rTemp+3 #define CIPTa4 rTemp+4 #define CIPTc0 rTempBis #define CIPTc1 rTempBis+1 #define CIPTc2 rTempBis+2 #define CIPTc3 rTempBis+3 #define CIPTc4 rTempBis+4 #define CIPTz rTempBis+6 #define CIPTy rTempBis+7 movw rY, rpState movw rX, rpState ; 5 * C sbiw rX, 40 movw rZ, pRound ldi CIPTz, 8 KeccakChiIotaPrepareTheta_zLoop: mov CIPTc0, zero mov CIPTc1, zero movw CIPTc2, CIPTc0 mov CIPTc4, zero ldi CIPTy, 5 KeccakChiIotaPrepareTheta_yLoop: ld CIPTa0, Y ldd CIPTa1, Y+8 ldd CIPTa2, Y+16 ldd CIPTa3, Y+24 ldd CIPTa4, Y+32 ;*p = t = a0 ^ ((~a1) & a2); c0 ^= t; mov r0, CIPTa1 com r0 and r0, CIPTa2 eor r0, CIPTa0 eor CIPTc0, r0 st Y, r0 ;*(p+8) = t = a1 ^ ((~a2) & a3); c1 ^= t; mov r0, CIPTa2 com r0 and r0, CIPTa3 eor r0, CIPTa1 eor CIPTc1, r0 std Y+8, r0 ;*(p+16) = a2 ^= ((~a3) & a4); c2 ^= a2; mov r0, CIPTa3 com r0 and r0, CIPTa4 eor r0, CIPTa2 eor CIPTc2, r0 std Y+16, r0 ;*(p+24) = a3 ^= ((~a4) & a0); c3 ^= a3; mov r0, CIPTa4 com r0 and r0, CIPTa0 eor r0, CIPTa3 eor CIPTc3, r0 std Y+24, r0 ;*(p+32) = a4 ^= ((~a0) & a1); c4 ^= a4; com CIPTa0 and CIPTa0, CIPTa1 eor CIPTa0, CIPTa4 eor CIPTc4, CIPTa0 std Y+32, CIPTa0 adiw rY, 40 dec CIPTy brne KeccakChiIotaPrepareTheta_yLoop subi rY, 200 sbc rY+1, zero lpm r0, Z+ ;Round Constant ld CIPTa0, Y eor CIPTa0, r0 st Y+, CIPTa0 movw pRound, rZ movw rZ, rX eor CIPTc0, r0 st Z+, CIPTc0 std Z+7, CIPTc1 std Z+15, CIPTc2 std Z+23, CIPTc3 std Z+31, CIPTc4 movw rX, rZ movw rZ, pRound dec CIPTz brne KeccakChiIotaPrepareTheta_zLoop #undef CIPTa0 #undef CIPTa1 #undef CIPTa2 #undef CIPTa3 #undef CIPTa4 #undef CIPTc0 #undef CIPTc1 #undef CIPTc2 #undef CIPTc3 #undef CIPTc4 #undef CIPTz #undef CIPTy ;Check for terminator lpm r0, Z inc r0 breq Keccak_Done rjmp Keccak_RoundLoop Keccak_Done: ret #undef rTemp #undef rTempBis #undef rTempTer #undef pRound #undef rpState #undef zero #undef rX #undef rY #undef rZ