918 lines
34 KiB
Erlang
918 lines
34 KiB
Erlang
%%% @doc Module enacl implements bindings to the NaCl/libsodium crypto-library
|
|
%%% <p>This module implements NIF bindings to the library known as NaCl (pronounced "salt").
|
|
%%% The NaCl library provides a sane cryptographic interface to the world in an attempt to
|
|
%%% make it harder to abuse and misuse cryptographic primitives.</p>
|
|
%%% <p>This module implements an Erlang-idiomatic API to the underlying library. If in doubt
|
|
%%% about a primitive, always consult the underlying documentation.</p>
|
|
%%% <p>There are two libraries in existence: NaCl and libsodium, the latter being a more
|
|
%%% portable variant of the NaCl library. The C-level API is interchangeable so we can run
|
|
%%% on any of these underlying libraries as seen from the Erlang world. We simply have to
|
|
%%% restrict ourselves to the portion of the code base which is overlapping.</p>
|
|
%%% <p><b>Warning:</b> The cryptographic strength of your implementation is no stronger than
|
|
%%% plaintext cryptography unless you take care in using these primitives correctly. Hence,
|
|
%%% implementors should use these primitives with that in mind.</p>
|
|
%%% <p><b>Note:</b> All functions will fail with a `badarg' error if given incorrect
|
|
%%% parameters.</p>
|
|
%%% @end.
|
|
-module(enacl).
|
|
|
|
%% Public key crypto
|
|
-export([
|
|
box_keypair/0,
|
|
box/4,
|
|
box_open/4,
|
|
box_beforenm/2,
|
|
box_afternm/3,
|
|
box_open_afternm/3,
|
|
|
|
box_nonce_size/0,
|
|
box_public_key_bytes/0,
|
|
box_secret_key_bytes/0,
|
|
box_beforenm_bytes/0,
|
|
|
|
sign_keypair_public_size/0,
|
|
sign_keypair_secret_size/0,
|
|
sign_keypair/0,
|
|
sign/2,
|
|
sign_open/2,
|
|
sign_detached/2,
|
|
sign_verify_detached/3,
|
|
|
|
box_seal/2,
|
|
box_seal_open/3
|
|
]).
|
|
|
|
%% Secret key crypto
|
|
-export([
|
|
secretbox_key_size/0,
|
|
secretbox_nonce_size/0,
|
|
secretbox/3,
|
|
secretbox_open/3,
|
|
|
|
stream_chacha20_key_size/0,
|
|
stream_chacha20_nonce_size/0,
|
|
stream_chacha20/3,
|
|
stream_chacha20_xor/3,
|
|
|
|
stream_key_size/0,
|
|
stream_nonce_size/0,
|
|
stream/3,
|
|
stream_xor/3,
|
|
|
|
auth_key_size/0,
|
|
auth_size/0,
|
|
auth/2,
|
|
auth_verify/3,
|
|
|
|
shorthash_key_size/0,
|
|
shorthash_size/0,
|
|
shorthash/2,
|
|
|
|
onetime_auth_key_size/0,
|
|
onetime_auth_size/0,
|
|
onetime_auth/2,
|
|
onetime_auth_verify/3
|
|
]).
|
|
|
|
%% Curve 25519.
|
|
-export([
|
|
curve25519_scalarmult/1, curve25519_scalarmult/2
|
|
]).
|
|
|
|
%% Ed 25519.
|
|
-export([
|
|
crypto_sign_ed25519_keypair/0,
|
|
crypto_sign_ed25519_public_to_curve25519/1,
|
|
crypto_sign_ed25519_secret_to_curve25519/1,
|
|
crypto_sign_ed25519_public_size/0,
|
|
crypto_sign_ed25519_secret_size/0
|
|
]).
|
|
|
|
%% Low-level functions
|
|
-export([
|
|
hash/1,
|
|
verify_16/2,
|
|
verify_32/2,
|
|
unsafe_memzero/1
|
|
]).
|
|
|
|
%% Key exchange functions
|
|
-export([
|
|
kx_keypair/0,
|
|
kx_client_session_keys/3,
|
|
kx_server_session_keys/3,
|
|
kx_public_key_size/0,
|
|
kx_secret_key_size/0,
|
|
kx_session_key_size/0
|
|
]).
|
|
|
|
%% Libsodium specific functions (which are also part of the "undocumented" interface to NaCl
|
|
-export([
|
|
randombytes/1
|
|
]).
|
|
|
|
-export([
|
|
verify/0
|
|
]).
|
|
|
|
%% Definitions of system budgets
|
|
%% To get a grip for these, call `enacl_timing:all/0' on your system. The numbers here are
|
|
%% described in the README.md file.
|
|
-define(HASH_SIZE, 4 * 1024).
|
|
-define(HASH_REDUCTIONS, 17 * 2).
|
|
-define(BOX_BEFORENM_REDUCTIONS, 60).
|
|
-define(BOX_AFTERNM_SIZE, 8 * 1024).
|
|
-define(BOX_AFTERNM_REDUCTIONS, 17 * 2).
|
|
-define(SECRETBOX_SIZE, 8 * 1024).
|
|
-define(SECRETBOX_REDUCTIONS, 17 * 2).
|
|
-define(SECRETBOX_OPEN_REDUCTIONS, 17 * 2).
|
|
-define(STREAM_SIZE, 16 * 1024).
|
|
-define(STREAM_REDUCTIONS, 17 * 2).
|
|
-define(AUTH_SIZE, 4 * 1024).
|
|
-define(AUTH_REDUCTIONS, 17 * 2).
|
|
-define(ONETIME_AUTH_SIZE, 16 * 1024).
|
|
-define(ONETIME_AUTH_REDUCTIONS, 16 * 2).
|
|
-define(ED25519_PUBLIC_TO_CURVE_REDS, 20 * 2).
|
|
-define(ED25519_SECRET_TO_CURVE_REDS, 20 * 2).
|
|
|
|
%% Constants used throughout the code base
|
|
-define(CRYPTO_BOX_ZEROBYTES, 32).
|
|
-define(P_ZEROBYTES, <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>). %% 32 bytes of 0
|
|
-define(CRYPTO_BOX_BOXZEROBYTES, 16).
|
|
-define(P_BOXZEROBYTES, <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>). %% 16 bytes
|
|
|
|
-define(CRYPTO_SECRETBOX_ZEROBYTES, 32).
|
|
-define(S_ZEROBYTES, <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>). %% 32 bytes
|
|
-define(CRYPTO_SECRETBOX_BOXZEROBYTES, 16).
|
|
-define(S_BOXZEROBYTES, <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>). %% 16 bytes
|
|
-define(CRYPTO_STREAM_CHACHA20_KEYBYTES, 32).
|
|
-define(CRYPTO_STREAM_CHACHA20_NONCEBYTES, 8).
|
|
-define(CRYPTO_STREAM_KEYBYTES, 32).
|
|
-define(CRYPTO_STREAM_NONCEBYTES, 24).
|
|
-define(CRYPTO_KX_PUBLICKEYBYTES, 32).
|
|
-define(CRYPTO_KX_SECRETKEYBYTES, 32).
|
|
-define(CRYPTO_KX_SESSIONKEYBYTES, 32).
|
|
|
|
%% @doc Verify makes sure the constants defined in libsodium matches ours
|
|
verify() ->
|
|
true = equals(binary:copy(<<0>>, enacl_nif:crypto_box_ZEROBYTES()), ?P_ZEROBYTES),
|
|
true = equals(binary:copy(<<0>>, enacl_nif:crypto_box_BOXZEROBYTES()), ?P_BOXZEROBYTES),
|
|
true = equals(binary:copy(<<0>>, enacl_nif:crypto_secretbox_ZEROBYTES()), ?S_ZEROBYTES),
|
|
true = equals(binary:copy(<<0>>, enacl_nif:crypto_secretbox_BOXZEROBYTES()),
|
|
?S_BOXZEROBYTES),
|
|
|
|
Verifiers = [
|
|
{crypto_stream_chacha20_KEYBYTES, ?CRYPTO_STREAM_CHACHA20_KEYBYTES},
|
|
{crypto_stream_chacha20_NONCEBYTES, ?CRYPTO_STREAM_CHACHA20_NONCEBYTES},
|
|
{crypto_stream_KEYBYTES, ?CRYPTO_STREAM_KEYBYTES},
|
|
{crypto_stream_NONCEBYTES, ?CRYPTO_STREAM_NONCEBYTES},
|
|
{crypto_box_ZEROBYTES, ?CRYPTO_BOX_ZEROBYTES},
|
|
{crypto_box_BOXZEROBYTES, ?CRYPTO_BOX_BOXZEROBYTES},
|
|
{crypto_secretbox_ZEROBYTES, ?CRYPTO_SECRETBOX_ZEROBYTES},
|
|
{crypto_secretbox_BOXZEROBYTES, ?CRYPTO_SECRETBOX_BOXZEROBYTES},
|
|
{crypto_kx_SESSIONKEYBYTES, ?CRYPTO_KX_SESSIONKEYBYTES},
|
|
{crypto_kx_PUBLICKEYBYTES, ?CRYPTO_KX_PUBLICKEYBYTES},
|
|
{crypto_kx_SECRETKEYBYTES, ?CRYPTO_KX_SECRETKEYBYTES}
|
|
],
|
|
run_verifiers(Verifiers).
|
|
|
|
run_verifiers([]) -> ok;
|
|
run_verifiers([{V, R} | Vs]) ->
|
|
case enacl_nif:V() of
|
|
R -> run_verifiers(Vs);
|
|
Other -> {error, {verifier, V, {R, '/=', Other}}}
|
|
end.
|
|
|
|
equals(X,X) -> true;
|
|
equals(X,Y) -> {X, '/=', Y}.
|
|
|
|
%% Low level helper functions
|
|
%% -----------------
|
|
|
|
%% @doc hash/1 hashes data into a cryptographically secure checksum.
|
|
%%
|
|
%% <p>Given an iodata(), `Data' of any size, run a cryptographically secure hash algorithm to
|
|
%% produce a checksum of the data. This can be used to verify the integrity of a data block
|
|
%% since the checksum have the properties of cryptographic hashes in general.</p>
|
|
%% <p>The currently selected primitive (Nov. 2014) is SHA-512</p>
|
|
%% @end
|
|
-spec hash(Data) -> Checksum
|
|
when Data :: iodata(),
|
|
Checksum :: binary().
|
|
|
|
hash(Bin) ->
|
|
case iolist_size(Bin) of
|
|
K when K =< ?HASH_SIZE ->
|
|
bump(enacl_nif:crypto_hash_b(Bin), ?HASH_REDUCTIONS, ?HASH_SIZE, K);
|
|
_ ->
|
|
enacl_nif:crypto_hash(Bin)
|
|
end.
|
|
|
|
%% @doc verify_16/2 implements constant time 16-byte binary() verification
|
|
%%
|
|
%% <p>A subtle problem in cryptographic software are timing attacks where an attacker exploits
|
|
%% early exist in string verification if the strings happen to mismatch. This allows the
|
|
%% attacker to time how long verification took and thus learn the structure of the desired
|
|
%% string to use. The verify_16/2 call will check two 16 byte strings for equality while
|
|
%% guaranteeing the equality operation is constant time.</p>
|
|
%% <p>If the strings are not exactly 16 bytes, the comparison function will fail with badarg.</p>
|
|
%% <p>The functions take binary() values and not iolist() values since the latter would convert in non-constant time</p>
|
|
%% <p>Verification returns a boolean. `true' if the strings match, `false' otherwise.</p>
|
|
%% @end
|
|
-spec verify_16(binary(), binary()) -> boolean().
|
|
verify_16(X, Y) when is_binary(X), is_binary(Y) -> enacl_nif:crypto_verify_16(X, Y);
|
|
verify_16(_, _) -> error(badarg).
|
|
|
|
%% @doc verify_32/2 implements constant time 32-byte iolist() verification
|
|
%%
|
|
%% This function works as {@link verify_16/2} but does so on 32 byte strings. Same caveats apply.
|
|
%% @end
|
|
-spec verify_32(binary(), binary()) -> boolean().
|
|
verify_32(X, Y) when is_binary(X), is_binary(Y) -> enacl_nif:crypto_verify_32(X, Y);
|
|
verify_32(_, _) -> error(badarg).
|
|
|
|
%% @doc unsafe_memzero/1 ipmlements guaranteed zero'ing of binary data.
|
|
%%
|
|
%% <p><bold>WARNING:</bold> Take great care. This way be dragons.</p>
|
|
%% <p>This is verify unsafe. If any copies of the binary have been made they are unaffected.
|
|
%% This is intended for use with cryptographic keys where they are only shared within
|
|
%% a running process without copies. This allows removing, eg, symmetric session keys. </p>
|
|
%% @end
|
|
-spec unsafe_memzero(binary()) -> atom().
|
|
unsafe_memzero(X) when is_binary(X) -> enacl_nif:sodium_memzero(X);
|
|
unsafe_memzero(_) -> error(badarg).
|
|
|
|
%% Public Key Crypto
|
|
%% ---------------------
|
|
%% @doc box_keypair/0 creates a new Public/Secret keypair.
|
|
%%
|
|
%% Generates and returns a new key pair for the Box encryption scheme. The return value is a
|
|
%% map in order to avoid using the public key as a secret key and vice versa.
|
|
%% @end.
|
|
-spec box_keypair() -> #{ atom() => binary() }.
|
|
box_keypair() ->
|
|
{PK, SK} = enacl_nif:crypto_box_keypair(),
|
|
#{ public => PK, secret => SK}.
|
|
|
|
|
|
%% @doc box/4 encrypts+authenticates a message to another party.
|
|
%%
|
|
%% Encrypt a `Msg' to the party identified by public key `PK' using your own secret key `SK' to
|
|
%% authenticate yourself. Requires a `Nonce' in addition. Returns the ciphered message.
|
|
%% @end
|
|
-spec box(Msg, Nonce, PK, SK) -> CipherText
|
|
when Msg :: iodata(),
|
|
Nonce :: binary(),
|
|
PK :: binary(),
|
|
SK :: binary(),
|
|
CipherText :: binary().
|
|
box(Msg, Nonce, PK, SK) ->
|
|
enacl_nif:crypto_box([?P_ZEROBYTES, Msg], Nonce, PK, SK).
|
|
|
|
%% @doc box_open/4 decrypts+verifies a message from another party.
|
|
%%
|
|
%% Decrypt a `CipherText' into a `Msg' given the other partys public key `PK' and your secret
|
|
%% key `SK'. Also requires the same nonce as was used by the other party. Returns the plaintext
|
|
%% message.
|
|
%% @end
|
|
-spec box_open(CipherText, Nonce, PK, SK) -> {ok, Msg} | {error, failed_verification}
|
|
when CipherText :: iodata(),
|
|
Nonce :: binary(),
|
|
PK :: binary(),
|
|
SK :: binary(),
|
|
Msg :: binary().
|
|
box_open(CipherText, Nonce, PK, SK) ->
|
|
case enacl_nif:crypto_box_open([?P_BOXZEROBYTES, CipherText], Nonce, PK, SK) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end.
|
|
|
|
%% @doc box_beforenm/2 precomputes a box shared key for a PK/SK keypair
|
|
%% @end
|
|
-spec box_beforenm(PK, SK) -> binary()
|
|
when
|
|
PK :: binary(),
|
|
SK :: binary().
|
|
box_beforenm(PK, SK) ->
|
|
R = enacl_nif:crypto_box_beforenm(PK, SK),
|
|
erlang:bump_reductions(?BOX_BEFORENM_REDUCTIONS),
|
|
R.
|
|
|
|
%% @doc box_afternm/3 works like `box/4' but uses a precomputed key
|
|
%%
|
|
%% Calling `box_afternm(M, Nonce, K)' for a precomputed key `K = box_beforenm(PK, SK)' works exactly as
|
|
%% if you had called `box(M, Nonce, PK, SK)'. Except that it avoids computations in the elliptic curve Curve25519,
|
|
%% and thus is a much faster operation.
|
|
%% @end
|
|
-spec box_afternm(Msg, Nonce, K) -> CipherText
|
|
when
|
|
Msg :: iodata(),
|
|
Nonce :: binary(),
|
|
K :: binary(),
|
|
CipherText :: binary().
|
|
box_afternm(Msg, Nonce, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?BOX_AFTERNM_SIZE ->
|
|
bump(enacl_nif:crypto_box_afternm_b([?P_ZEROBYTES, Msg], Nonce, Key),
|
|
?BOX_AFTERNM_REDUCTIONS, ?BOX_AFTERNM_SIZE, K);
|
|
_ ->
|
|
enacl_nif:crypto_box_afternm([?P_ZEROBYTES, Msg], Nonce, Key)
|
|
end.
|
|
|
|
%% @doc box_open_afternm/3 works like `box_open/4` but uses a precomputed key
|
|
%%
|
|
%% Calling `box_open_afternm(M, Nonce, K)' for a precomputed key `K = box_beforenm(PK, SK)' works exactly as
|
|
%% if you had called `box_open(M, Nonce, PK, SK)'. Except the operation is much faster as it avoids costly
|
|
%% computations in the elliptic curve Curve25519.
|
|
%% @end
|
|
-spec box_open_afternm(CT, Nonce, K) -> {ok, Msg} | {error, failed_verification}
|
|
when
|
|
CT :: binary(),
|
|
Nonce :: binary(),
|
|
K :: binary(),
|
|
Msg :: binary().
|
|
box_open_afternm(CipherText, Nonce, Key) ->
|
|
case iolist_size(CipherText) of
|
|
K when K =< ?BOX_AFTERNM_SIZE ->
|
|
R =
|
|
case enacl_nif:crypto_box_open_afternm_b([?P_BOXZEROBYTES, CipherText], Nonce, Key) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end,
|
|
bump(R, ?BOX_AFTERNM_REDUCTIONS, ?BOX_AFTERNM_SIZE, K);
|
|
_ ->
|
|
case enacl_nif:crypto_box_open_afternm([?P_BOXZEROBYTES, CipherText], Nonce, Key) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end
|
|
end.
|
|
|
|
%% @doc box_nonce_size/0 return the byte-size of the nonce
|
|
%%
|
|
%% Used to obtain the size of the nonce.
|
|
%% @end.
|
|
-spec box_nonce_size() -> pos_integer().
|
|
box_nonce_size() ->
|
|
enacl_nif:crypto_box_NONCEBYTES().
|
|
|
|
%% @private
|
|
-spec box_public_key_bytes() -> pos_integer().
|
|
box_public_key_bytes() ->
|
|
enacl_nif:crypto_box_PUBLICKEYBYTES().
|
|
|
|
%% @private
|
|
box_beforenm_bytes() ->
|
|
enacl_nif:crypto_box_BEFORENMBYTES().
|
|
|
|
%% Signatures
|
|
|
|
%% @private
|
|
sign_keypair_public_size() ->
|
|
enacl_nif:crypto_sign_PUBLICKEYBYTES().
|
|
|
|
%% @private
|
|
sign_keypair_secret_size() ->
|
|
enacl_nif:crypto_sign_SECRETKEYBYTES().
|
|
|
|
%% @doc sign_keypair/0 returns a signature keypair for signing
|
|
%%
|
|
%% The returned value is a map in order to make it harder to misuse keys.
|
|
%% @end
|
|
-spec sign_keypair() -> #{ atom() => binary() }.
|
|
sign_keypair() ->
|
|
{PK, SK} = enacl_nif:crypto_sign_keypair(),
|
|
#{ public => PK, secret => SK}.
|
|
|
|
%% @doc sign/2 signs a message with a digital signature identified by a secret key.
|
|
%%
|
|
%% Given a message `M' and a secret key `SK' the function will sign the message and return a signed message `SM'.
|
|
%% @end
|
|
-spec sign(M, SK) -> SM
|
|
when
|
|
M :: iodata(),
|
|
SK :: binary(),
|
|
SM :: binary().
|
|
sign(M, SK) ->
|
|
enacl_nif:crypto_sign(M, SK).
|
|
|
|
%% @doc sign_open/2 opens a digital signature
|
|
%%
|
|
%% Given a signed message `SM' and a public key `PK', verify that the message has the
|
|
%% right signature. Returns either `{ok, M}' or `{error, failed_verification}' depending
|
|
%% on the correctness of the signature.
|
|
%% @end
|
|
-spec sign_open(SM, PK) -> {ok, M} | {error, failed_verification}
|
|
when
|
|
SM :: iodata(),
|
|
PK :: binary(),
|
|
M :: binary().
|
|
sign_open(SM, PK) ->
|
|
case enacl_nif:crypto_sign_open(SM, PK) of
|
|
M when is_binary(M) -> {ok, M};
|
|
{error, Err} -> {error, Err}
|
|
end.
|
|
|
|
%% @doc sign_detached/2 computes a digital signature given a message and a secret key.
|
|
%%
|
|
%% Given a message `M' and a secret key `SK' the function will compute the digital signature `DS'.
|
|
%% @end
|
|
-spec sign_detached(M, SK) -> DS
|
|
when
|
|
M :: iodata(),
|
|
SK :: binary(),
|
|
DS :: binary().
|
|
sign_detached(M, SK) ->
|
|
enacl_nif:crypto_sign_detached(M, SK).
|
|
|
|
%% @doc sign_verify_detached/3 verifies the given signature against the given
|
|
%% message for the given public key.
|
|
%%
|
|
%% Given a signature `SIG', a message `M', and a public key `PK', the function computes
|
|
%% true iff the `SIG' is valid for `M' and `PK'.
|
|
-spec sign_verify_detached(SIG, M, PK) -> {ok, M} | {error, failed_verification}
|
|
when
|
|
SIG :: binary(),
|
|
M :: iodata(),
|
|
PK :: binary().
|
|
sign_verify_detached(SIG, M, PK) ->
|
|
case enacl_nif:crypto_sign_verify_detached(SIG, M, PK) of
|
|
true -> {ok, M};
|
|
false -> {error, failed_verification}
|
|
end.
|
|
|
|
%% @private
|
|
-spec box_secret_key_bytes() -> pos_integer().
|
|
box_secret_key_bytes() ->
|
|
enacl_nif:crypto_box_SECRETKEYBYTES().
|
|
|
|
%% @doc seal_box/2 encrypts an anonymous message to another party.
|
|
%%
|
|
%% Encrypt a `Msg' to a party using his public key, `PK'. This generates an ephemeral
|
|
%% keypair and then uses `box'. Ephemeral public key will sent to other party. Returns the
|
|
%% enciphered message `SealedCipherText' which includes ephemeral public key at head.
|
|
%% @end
|
|
-spec box_seal(Msg, PK) -> SealedCipherText
|
|
when Msg :: iodata(),
|
|
PK :: binary(),
|
|
SealedCipherText :: binary().
|
|
box_seal(Msg, PK) ->
|
|
enacl_nif:crypto_box_seal(Msg, PK).
|
|
|
|
%% @doc seal_box_open/3 decrypts+check message integrity from an unknown sender.
|
|
%%
|
|
%% Decrypt a `SealedCipherText' which contains an ephemeral public key from another party
|
|
%% into a `Msg' using that key and your public and secret keys, `PK' and `SK'. Returns the
|
|
%% plaintext message.
|
|
%% @end
|
|
-spec box_seal_open(SealedCipherText, PK, SK) -> {ok, Msg} | {error, failed_verification}
|
|
when SealedCipherText :: iodata(),
|
|
PK :: binary(),
|
|
SK :: binary(),
|
|
Msg :: binary().
|
|
box_seal_open(SealedCipherText, PK, SK) ->
|
|
case enacl_nif:crypto_box_seal_open(SealedCipherText, PK, SK) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end.
|
|
|
|
%% @doc secretbox/3 encrypts a message with a key
|
|
%%
|
|
%% Given a `Msg', a `Nonce' and a `Key' encrypt the message with the Key while taking the
|
|
%% nonce into consideration. The function returns the Box obtained from the encryption.
|
|
%% @end
|
|
-spec secretbox(Msg, Nonce, Key) -> Box
|
|
when
|
|
Msg :: iodata(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
Box :: binary().
|
|
|
|
secretbox(Msg, Nonce, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?SECRETBOX_SIZE ->
|
|
bump(enacl_nif:crypto_secretbox_b([?S_ZEROBYTES, Msg], Nonce, Key),
|
|
?SECRETBOX_REDUCTIONS,
|
|
?SECRETBOX_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_secretbox([?S_ZEROBYTES, Msg], Nonce, Key)
|
|
end.
|
|
%% @doc secretbox_open/3 opens a sealed box.
|
|
%%
|
|
%% Given a boxed `CipherText' and given we know the used `Nonce' and `Key' we can open the box
|
|
%% to obtain the `Msg` within. Returns either `{ok, Msg}' or `{error, failed_verification}'.
|
|
%% @end
|
|
-spec secretbox_open(CipherText, Nonce, Key) -> {ok, Msg} | {error, failed_verification}
|
|
when
|
|
CipherText :: iodata(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
Msg :: binary().
|
|
secretbox_open(CipherText, Nonce, Key) ->
|
|
case iolist_size(CipherText) of
|
|
K when K =< ?SECRETBOX_SIZE ->
|
|
R = case enacl_nif:crypto_secretbox_open_b([?S_BOXZEROBYTES, CipherText],
|
|
Nonce, Key) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end,
|
|
bump(R, ?SECRETBOX_OPEN_REDUCTIONS, ?SECRETBOX_SIZE, K);
|
|
_ ->
|
|
case enacl_nif:crypto_secretbox_open([?S_BOXZEROBYTES, CipherText], Nonce, Key) of
|
|
{error, Err} -> {error, Err};
|
|
Bin when is_binary(Bin) -> {ok, Bin}
|
|
end
|
|
end.
|
|
|
|
%% @doc secretbox_nonce_size/0 returns the size of the secretbox nonce
|
|
%%
|
|
%% When encrypting with a secretbox, the nonce must have this size
|
|
%% @end
|
|
secretbox_nonce_size() ->
|
|
enacl_nif:crypto_secretbox_NONCEBYTES().
|
|
|
|
%% @doc secretbox_key_size/0 returns the size of the secretbox key
|
|
%%
|
|
%% When encrypting with a secretbox, the key must have this size
|
|
%% @end
|
|
secretbox_key_size() ->
|
|
enacl_nif:crypto_secretbox_KEYBYTES().
|
|
|
|
%% @doc stream_chacha20_nonce_size/0 returns the byte size of the nonce for streams
|
|
%% @end
|
|
-spec stream_chacha20_nonce_size() -> ?CRYPTO_STREAM_CHACHA20_NONCEBYTES.
|
|
stream_chacha20_nonce_size() -> ?CRYPTO_STREAM_CHACHA20_NONCEBYTES.
|
|
|
|
%% @doc stream_key_size/0 returns the byte size of the key for streams
|
|
%% @end
|
|
-spec stream_chacha20_key_size() -> ?CRYPTO_STREAM_CHACHA20_KEYBYTES.
|
|
stream_chacha20_key_size() -> ?CRYPTO_STREAM_CHACHA20_KEYBYTES.
|
|
|
|
%% @doc stream_chacha20/3 produces a cryptographic stream suitable for secret-key encryption
|
|
%%
|
|
%% <p>Given a positive `Len' a `Nonce' and a `Key', the stream_chacha20/3 function will return an unpredictable cryptographic stream of bytes
|
|
%% based on this output. In other words, the produced stream is indistinguishable from a random stream. Using this stream one
|
|
%% can XOR it with a message in order to produce a encrypted message.</p>
|
|
%% <p><b>Note:</b> You need to use different Nonce values for different messages. Otherwise the same stream is produced and thus
|
|
%% the messages will have predictability which in turn makes the encryption scheme fail.</p>
|
|
%% @end
|
|
-spec stream_chacha20(Len, Nonce, Key) -> CryptoStream
|
|
when
|
|
Len :: non_neg_integer(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
CryptoStream :: binary().
|
|
stream_chacha20(Len, Nonce, Key) when is_integer(Len), Len >= 0, Len =< ?STREAM_SIZE ->
|
|
bump(enacl_nif:crypto_stream_chacha20_b(Len, Nonce, Key),
|
|
?STREAM_REDUCTIONS,
|
|
?STREAM_SIZE,
|
|
Len);
|
|
stream_chacha20(Len, Nonce, Key) when is_integer(Len), Len >= 0 ->
|
|
enacl_nif:crypto_stream_chacha20(Len, Nonce, Key);
|
|
stream_chacha20(_, _, _) -> error(badarg).
|
|
|
|
%% @doc stream_chacha20_xor/3 encrypts a plaintext message into ciphertext
|
|
%%
|
|
%% The stream_chacha20_xor/3 function works by using the {@link stream_chacha20/3} api to XOR a message with the cryptographic stream. The same
|
|
%% caveat applies: the nonce must be new for each sent message or the system fails to work.
|
|
%% @end
|
|
-spec stream_chacha20_xor(Msg, Nonce, Key) -> CipherText
|
|
when
|
|
Msg :: iodata(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
CipherText :: binary().
|
|
stream_chacha20_xor(Msg, Nonce, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?STREAM_SIZE ->
|
|
bump(enacl_nif:crypto_stream_chacha20_xor_b(Msg, Nonce, Key),
|
|
?STREAM_REDUCTIONS,
|
|
?STREAM_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_stream_chacha20_xor(Msg, Nonce, Key)
|
|
end.
|
|
|
|
%% @doc stream_nonce_size/0 returns the byte size of the nonce for streams
|
|
%% @end
|
|
-spec stream_nonce_size() -> ?CRYPTO_STREAM_NONCEBYTES.
|
|
stream_nonce_size() -> ?CRYPTO_STREAM_NONCEBYTES.
|
|
|
|
%% @doc stream_key_size/0 returns the byte size of the key for streams
|
|
%% @end
|
|
-spec stream_key_size() -> ?CRYPTO_STREAM_KEYBYTES.
|
|
stream_key_size() -> ?CRYPTO_STREAM_KEYBYTES.
|
|
|
|
%% @doc stream/3 produces a cryptographic stream suitable for secret-key encryption
|
|
%%
|
|
%% <p>Given a positive `Len' a `Nonce' and a `Key', the stream/3 function will return an unpredictable cryptographic stream of bytes
|
|
%% based on this output. In other words, the produced stream is indistinguishable from a random stream. Using this stream one
|
|
%% can XOR it with a message in order to produce a encrypted message.</p>
|
|
%% <p><b>Note:</b> You need to use different Nonce values for different messages. Otherwise the same stream is produced and thus
|
|
%% the messages will have predictability which in turn makes the encryption scheme fail.</p>
|
|
%% @end
|
|
-spec stream(Len, Nonce, Key) -> CryptoStream
|
|
when
|
|
Len :: non_neg_integer(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
CryptoStream :: binary().
|
|
stream(Len, Nonce, Key) when is_integer(Len), Len >= 0, Len =< ?STREAM_SIZE ->
|
|
bump(enacl_nif:crypto_stream_b(Len, Nonce, Key),
|
|
?STREAM_REDUCTIONS,
|
|
?STREAM_SIZE,
|
|
Len);
|
|
stream(Len, Nonce, Key) when is_integer(Len), Len >= 0 ->
|
|
enacl_nif:crypto_stream(Len, Nonce, Key);
|
|
stream(_, _, _) -> error(badarg).
|
|
|
|
%% @doc stream_xor/3 encrypts a plaintext message into ciphertext
|
|
%%
|
|
%% The stream_xor/3 function works by using the {@link stream/3} api to XOR a message with the cryptographic stream. The same
|
|
%% caveat applies: the nonce must be new for each sent message or the system fails to work.
|
|
%% @end
|
|
-spec stream_xor(Msg, Nonce, Key) -> CipherText
|
|
when
|
|
Msg :: iodata(),
|
|
Nonce :: binary(),
|
|
Key :: binary(),
|
|
CipherText :: binary().
|
|
stream_xor(Msg, Nonce, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?STREAM_SIZE ->
|
|
bump(enacl_nif:crypto_stream_xor_b(Msg, Nonce, Key),
|
|
?STREAM_REDUCTIONS,
|
|
?STREAM_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_stream_xor(Msg, Nonce, Key)
|
|
end.
|
|
|
|
%% @doc auth_key_size/0 returns the byte-size of the authentication key
|
|
%% @end
|
|
-spec auth_key_size() -> pos_integer().
|
|
auth_key_size() -> enacl_nif:crypto_auth_KEYBYTES().
|
|
|
|
%% @doc auth_size/0 returns the byte-size of the authenticator
|
|
%% @end
|
|
-spec auth_size() -> pos_integer().
|
|
auth_size() -> enacl_nif:crypto_auth_BYTES().
|
|
|
|
%% @doc auth/2 produces an authenticator (MAC) for a message
|
|
%%
|
|
%% Given a `Msg' and a `Key' produce a MAC/Authenticator for that message. The key can be reused for several such Msg/Authenticator pairs.
|
|
%% An eavesdropper will not learn anything extra about the message structure.
|
|
%% @end
|
|
-spec auth(Msg, Key) -> Authenticator
|
|
when
|
|
Msg :: iodata(),
|
|
Key :: binary(),
|
|
Authenticator :: binary().
|
|
auth(Msg, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?AUTH_SIZE ->
|
|
bump(enacl_nif:crypto_auth_b(Msg, Key), ?AUTH_REDUCTIONS, ?AUTH_SIZE, K);
|
|
_ ->
|
|
enacl_nif:crypto_auth(Msg, Key)
|
|
end.
|
|
|
|
%% @doc auth_verify/3 verifies an authenticator for a message
|
|
%%
|
|
%% Given an `Authenticator', a `Msg' and a `Key'; verify that the MAC for the pair `{Msg, Key}' is really `Authenticator'. Returns
|
|
%% the value `true' if the verfication passes. Upon failure, the function returns `false'.
|
|
%% @end
|
|
-spec auth_verify(Authenticator, Msg, Key) -> boolean()
|
|
when
|
|
Authenticator :: binary(),
|
|
Msg :: iodata(),
|
|
Key :: binary().
|
|
auth_verify(A, M, K) ->
|
|
case iolist_size(M) of
|
|
K when K =< ?AUTH_SIZE ->
|
|
bump(enacl_nif:crypto_auth_verify_b(A, M, K),
|
|
?AUTH_REDUCTIONS,
|
|
?AUTH_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_auth_verify(A, M, K)
|
|
end.
|
|
|
|
%% @doc shorthash_key_size/0 returns the byte-size of the authentication key
|
|
%% @end
|
|
-spec shorthash_key_size() -> pos_integer().
|
|
shorthash_key_size() -> enacl_nif:crypto_shorthash_KEYBYTES().
|
|
|
|
%% @doc shorthash_size/0 returns the byte-size of the authenticator
|
|
%% @end
|
|
-spec shorthash_size() -> pos_integer().
|
|
shorthash_size() -> enacl_nif:crypto_shorthash_BYTES().
|
|
|
|
%% @doc shorthash/2 produces a short authenticator (MAC) for a message suitable for hashtables and refs
|
|
%%
|
|
%% Given a `Msg' and a `Key' produce a MAC/Authenticator for that message. The key can be reused for several such Msg/Authenticator pairs.
|
|
%% An eavesdropper will not learn anything extra about the message structure.
|
|
%% @end
|
|
-spec shorthash(Msg, Key) -> Authenticator
|
|
when
|
|
Msg :: iodata(),
|
|
Key :: binary(),
|
|
Authenticator :: binary().
|
|
shorthash(Msg, Key) ->
|
|
enacl_nif:crypto_shorthash(Msg, Key).
|
|
|
|
%% @doc onetime_auth/2 produces a ONE-TIME authenticator for a message
|
|
%%
|
|
%% This function works like {@link auth/2} except that the key must not be used again for subsequent messages. That is, the pair
|
|
%% `{Msg, Key}' is unique and only to be used once. The advantage is noticably faster execution.
|
|
%% @end
|
|
-spec onetime_auth(Msg, Key) -> Authenticator
|
|
when
|
|
Msg :: iodata(),
|
|
Key :: binary(),
|
|
Authenticator :: binary().
|
|
onetime_auth(Msg, Key) ->
|
|
case iolist_size(Msg) of
|
|
K when K =< ?ONETIME_AUTH_SIZE ->
|
|
bump(enacl_nif:crypto_onetimeauth_b(Msg, Key),
|
|
?ONETIME_AUTH_REDUCTIONS,
|
|
?ONETIME_AUTH_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_onetimeauth(Msg, Key)
|
|
end.
|
|
|
|
%% @doc onetime_auth_verify/3 verifies an ONE-TIME authenticator for a message
|
|
%%
|
|
%% Given an `Authenticator', a `Msg' and a `Key'; verify that the MAC for the pair `{Msg, Key}' is really `Authenticator'. Returns
|
|
%% the value `true' if the verification passes. Upon failure, the function returns `false'. Note the caveat from {@link onetime_auth/2}
|
|
%% applies: you are not allowed to ever use the same key again for another message.
|
|
%% @end
|
|
-spec onetime_auth_verify(Authenticator, Msg, Key) -> boolean()
|
|
when
|
|
Authenticator :: binary(),
|
|
Msg :: iodata(),
|
|
Key :: binary().
|
|
onetime_auth_verify(A, M, K) ->
|
|
case iolist_size(M) of
|
|
K when K =< ?ONETIME_AUTH_SIZE ->
|
|
bump(enacl_nif:crypto_onetimeauth_verify_b(A, M, K),
|
|
?ONETIME_AUTH_REDUCTIONS,
|
|
?ONETIME_AUTH_SIZE,
|
|
K);
|
|
_ ->
|
|
enacl_nif:crypto_onetimeauth_verify(A, M, K)
|
|
end.
|
|
|
|
%% @doc onetime_auth_size/0 returns the number of bytes of the one-time authenticator
|
|
%% @end
|
|
-spec onetime_auth_size() -> pos_integer().
|
|
onetime_auth_size() -> enacl_nif:crypto_onetimeauth_BYTES().
|
|
|
|
%% @doc onetime_auth_key_size/0 returns the byte-size of the onetime authentication key
|
|
%% @end
|
|
-spec onetime_auth_key_size() -> pos_integer().
|
|
onetime_auth_key_size() -> enacl_nif:crypto_onetimeauth_KEYBYTES().
|
|
|
|
%% Curve 25519 Crypto
|
|
%% ------------------
|
|
%% @doc curve25519_scalarmult/2 does a scalar multiplication between the Secret and the BasePoint.
|
|
%% @end.
|
|
-spec curve25519_scalarmult(Secret :: binary(), BasePoint :: binary()) -> binary().
|
|
curve25519_scalarmult(Secret, BasePoint) ->
|
|
enacl_nif:crypto_curve25519_scalarmult(Secret, BasePoint).
|
|
|
|
%% @doc curve25519_scalarmult/1 avoids messing up arguments.
|
|
%% Takes as input a map `#{ secret := Secret, base_point := BasePoint }' in order to avoid
|
|
%% messing up the calling order.
|
|
%% @end
|
|
curve25519_scalarmult(#{ secret := Secret, base_point := BasePoint }) ->
|
|
curve25519_scalarmult(Secret, BasePoint).
|
|
|
|
%% Ed 25519 Crypto
|
|
%% ---------------
|
|
%% @doc crypto_sign_ed25519_keypair/0 creates a new Ed 25519 Public/Secret keypair.
|
|
%%
|
|
%% Generates and returns a new key pair for the Ed 25519 signature scheme. The return value is a
|
|
%% map in order to avoid using the public key as a secret key and vice versa.
|
|
%% @end
|
|
-spec crypto_sign_ed25519_keypair() -> #{ atom() => binary() }.
|
|
crypto_sign_ed25519_keypair() ->
|
|
{PK, SK} = enacl_nif:crypto_sign_ed25519_keypair(),
|
|
#{ public => PK, secret => SK }.
|
|
|
|
%% @doc crypto_sign_ed25519_public_to_curve25519/1 converts a given Ed 25519 public
|
|
%% key to a Curve 25519 public key.
|
|
%% @end
|
|
-spec crypto_sign_ed25519_public_to_curve25519(PublicKey :: binary()) -> binary().
|
|
crypto_sign_ed25519_public_to_curve25519(PublicKey) ->
|
|
R = enacl_nif:crypto_sign_ed25519_public_to_curve25519(PublicKey),
|
|
erlang:bump_reductions(?ED25519_PUBLIC_TO_CURVE_REDS),
|
|
R.
|
|
|
|
%% @doc crypto_sign_ed25519_secret_to_curve25519/1 converts a given Ed 25519 secret
|
|
%% key to a Curve 25519 secret key.
|
|
%% @end
|
|
-spec crypto_sign_ed25519_secret_to_curve25519(SecretKey :: binary()) -> binary().
|
|
crypto_sign_ed25519_secret_to_curve25519(SecretKey) ->
|
|
R = enacl_nif:crypto_sign_ed25519_secret_to_curve25519(SecretKey),
|
|
erlang:bump_reductions(?ED25519_SECRET_TO_CURVE_REDS),
|
|
R.
|
|
|
|
-spec crypto_sign_ed25519_public_size() -> pos_integer().
|
|
crypto_sign_ed25519_public_size() ->
|
|
enacl_nif:crypto_sign_ed25519_PUBLICKEYBYTES().
|
|
|
|
-spec crypto_sign_ed25519_secret_size() -> pos_integer().
|
|
crypto_sign_ed25519_secret_size() ->
|
|
enacl_nif:crypto_sign_ed25519_SECRETKEYBYTES().
|
|
|
|
%% Key exchange functions
|
|
%% ----------------------
|
|
%% @doc kx_keypair/0 creates a new Public/Secret keypair.
|
|
%%
|
|
%% Generates and returns a new key pair for the key exchange. The return value is a
|
|
%% map in order to avoid using the public key as a secret key and vice versa.
|
|
%% @end
|
|
-spec kx_keypair() -> #{ atom() => binary() }.
|
|
kx_keypair() ->
|
|
{PK, SK} = enacl_nif:crypto_kx_keypair(),
|
|
#{ public => PK, secret => SK}.
|
|
|
|
%% @doc kx_client_session_keys/3 computes and returns shared keys for client session.
|
|
%%
|
|
%% <p>Compute two shared keys using the server's public key `ServerPk' and the client's secret key `ClientPk'.</p>
|
|
%% <p>Returns map with two keys `client_rx' and `client_tx'.
|
|
%% `client_rx' will be used by the client to receive data from the server,
|
|
%% `client_tx' will by used by the client to send data to the server.</p>
|
|
%% @end
|
|
-spec kx_client_session_keys(ClientPk, ClientSk, ServerPk) -> #{ atom() => binary() }
|
|
when
|
|
ClientPk :: binary(),
|
|
ClientSk :: binary(),
|
|
ServerPk :: binary().
|
|
kx_client_session_keys(ClientPk, ClientSk, ServerPk) ->
|
|
{Rx, Tx} = enacl_nif:crypto_kx_client_session_keys(ClientPk, ClientSk, ServerPk),
|
|
#{ client_rx => Rx, client_tx => Tx}.
|
|
|
|
%% @doc kx_server_session_keys/3 computes and returns shared keys for server session.
|
|
%% <p>Compute two shared keys using the client's public key `ClientPk' and the server's secret key `ServerSk'.</p>
|
|
%% <p>Returns map with two keys `server_rx' and `server_tx'.
|
|
%% `server_rx' will be used by the server to receive data from the client,
|
|
%% `server_tx' will be used by the server to send data to the client.</p>
|
|
%% @end
|
|
-spec kx_server_session_keys(ServerPk, ServerSk, ClientPk) -> #{ atom() => binary() }
|
|
when
|
|
ServerPk :: binary(),
|
|
ServerSk :: binary(),
|
|
ClientPk :: binary().
|
|
kx_server_session_keys(ServerPk, ServerSk, ClientPk) ->
|
|
{Rx, Tx} = enacl_nif:crypto_kx_server_session_keys(ServerPk, ServerSk, ClientPk),
|
|
#{ server_rx => Rx, server_tx => Tx}.
|
|
|
|
%% @doc kx_session_key_size/0 returns the number of bytes of the generated during key exchange session key.
|
|
%% @end
|
|
-spec kx_session_key_size() -> pos_integer().
|
|
kx_session_key_size() ->
|
|
enacl_nif:crypto_kx_SESSIONKEYBYTES().
|
|
|
|
%% @doc kx_public_key_size/0 returns the number of bytes of the public key used in key exchange.
|
|
%% @end
|
|
-spec kx_public_key_size() -> pos_integer().
|
|
kx_public_key_size() ->
|
|
enacl_nif:crypto_kx_PUBLICKEYBYTES().
|
|
|
|
%% @doc kx_secret_key_size/0 returns the number of bytes of the secret key used in key exchange.
|
|
%% @end
|
|
-spec kx_secret_key_size() -> pos_integer().
|
|
kx_secret_key_size() ->
|
|
enacl_nif:crypto_kx_SECRETKEYBYTES().
|
|
|
|
%% Obtaining random bytes
|
|
|
|
%% @doc randombytes/1 produces a stream of random bytes of the given size
|
|
%%
|
|
%% The security properties of the random stream are that of the libsodium library. Specifically,
|
|
%% we use:
|
|
%%
|
|
%% * RtlGenRandom() on Windows systems
|
|
%% * arc4random() on OpenBSD and Bitrig
|
|
%% * /dev/urandom on other Unix environments
|
|
%%
|
|
%% It is up to you to pick a system with a appropriately strong (P)RNG for your purpose. We refer
|
|
%% you to the underlying system implementations for random data.
|
|
%% @end
|
|
-spec randombytes(non_neg_integer()) -> binary().
|
|
randombytes(N) ->
|
|
enacl_nif:randombytes(N).
|
|
|
|
%% Helpers
|
|
|
|
%% @doc bump/4 bumps a reduction budget linearly before returning the result
|
|
%% It is used for the on-scheduler variants of functions in order to make sure there
|
|
%% is a realistic apporach to handling the reduction counts of the system.
|
|
%% @end
|
|
bump(Res, Budget, Max, Sz) ->
|
|
Reds = (Budget * Sz) div Max,
|
|
erlang:bump_reductions(max(1, Reds)),
|
|
Res.
|